Biblio
Internet application providers now have more incentive than ever to collect user data, which greatly increases the risk of user privacy violations due to the emerging of deep neural networks. In this paper, we propose TensorClog-a poisoning attack technique that is designed for privacy protection against deep neural networks. TensorClog has three properties with each of them serving a privacy protection purpose: 1) training on TensorClog poisoned data results in lower inference accuracy, reducing the incentive of abusive data collection; 2) training on TensorClog poisoned data converges to a larger loss, which prevents the neural network from learning the privacy; and 3) TensorClog regularizes the perturbation to remain a high structure similarity, so that the poisoning does not affect the actual content in the data. Applying our TensorClog poisoning technique to CIFAR-10 dataset results in an increase in both converged training loss and test error by 300% and 272%, respectively. It manages to maintain data's human perception with a high SSIM index of 0.9905. More experiments including different limited information attack scenarios and a real-world application transferred from pre-trained ImageNet models are presented to further evaluate TensorClog's effectiveness in more complex situations.
With the development of cloud computing and its economic benefit, more and more companies and individuals outsource their data and computation to clouds. Meanwhile, the business way of resource outsourcing makes the data out of control from its owner and results in many security issues. The existing secure keyword search methods assume that cloud servers are curious-but-honest or partial honest, which makes them powerless to deal with the deliberately falsified or fabricated results of insider attacks. In this paper, we propose a verifiable single keyword top-k search scheme against insider attacks which can verify the integrity of search results. Data owners generate verification codes (VCs) for the corresponding files, which embed the ordered sequence information of the relevance scores between files and keywords. Then files and corresponding VCs are outsourced to cloud servers. When a data user performs a keyword search in cloud servers, the qualified result files are determined according to the relevance scores between the files and the interested keyword and then returned to the data user together with a VC. The integrity of the result files is verified by data users through reconstructing a new VC on the received files and comparing it with the received one. Performance evaluation have been conducted to demonstrate the efficiency and result redundancy of the proposed scheme.
Recent research endeavors have shown the potential of using feed-forward convolutional neural networks to accomplish fast style transfer for images. In this work, we take one step further to explore the possibility of exploiting a feed-forward network to perform style transfer for videos and simultaneously maintain temporal consistency among stylized video frames. Our feed-forward network is trained by enforcing the outputs of consecutive frames to be both well stylized and temporally consistent. More specifically, a hybrid loss is proposed to capitalize on the content information of input frames, the style information of a given style image, and the temporal information of consecutive frames. To calculate the temporal loss during the training stage, a novel two-frame synergic training mechanism is proposed. Compared with directly applying an existing image style transfer method to videos, our proposed method employs the trained network to yield temporally consistent stylized videos which are much more visually pleasant. In contrast to the prior video style transfer method which relies on time-consuming optimization on the fly, our method runs in real time while generating competitive visual results.
The Internet of Things (IoT) will connect not only computers and mobile devices, but it will also interconnect smart buildings, houses, and cities, as well as electrical grids, gas plants, and water networks, automobiles, airplanes, etc. IoT will lead to the development of a wide range of advanced information services that are pervasive, cost-effective, and can be accessed from anywhere and at any time. However, due to the exponential number of interconnected devices, cyber-security in the IoT is a major challenge. It heavily relies on the digital identity concept to build security mechanisms such as authentication and authorization. Current centralized identity management systems are built around third party identity providers, which raise privacy concerns and present a single point of failure. In addition, IoT unconventional characteristics such as scalability, heterogeneity and mobility require new identity management systems to operate in distributed and trustless environments, and uniquely identify a particular device based on its intrinsic digital properties and its relation to its human owner. In order to deal with these challenges, we present a Blockchain-based Identity Framework for IoT (BIFIT). We show how to apply our BIFIT to IoT smart homes to achieve identity self-management by end users. In the context of smart home, the framework autonomously extracts appliances signatures and creates blockchain-based identifies for their appliance owners. It also correlates appliances signatures (low level identities) and owners identifies in order to use them in authentication credentials and to make sure that any IoT entity is behaving normally.
The Internet of Things (IoT) connects not only computers and mobile devices, but it also interconnects smart buildings, homes, and cities, as well as electrical grids, gas, and water networks, automobiles, airplanes, etc. However, IoT applications introduce grand security challenges due to the increase in the attack surface. Current security approaches do not handle cybersecurity from a holistic point of view; hence a systematic cybersecurity mechanism needs to be adopted when designing IoTbased applications. In this work, we present a risk management framework to deploy secure IoT-based applications for Smart Infrastructures at the design time and the runtime. At the design time, we propose a risk management method that is appropriate for smart infrastructures. At the design time, our framework relies on the Anomaly Behavior Analysis (ABA) methodology enabled by the Autonomic Computing paradigm and an intrusion detection system to detect any threat that can compromise IoT infrastructures by. Our preliminary experimental results show that our framework can be used to detect threats and protect IoT premises and services.