Biblio

Filters: Author is Cao, L.  [Clear All Filters]
2021-02-16
Zhai, P., Song, Y., Zhu, X., Cao, L., Zhang, J., Yang, C..  2020.  Distributed Denial of Service Defense in Software Defined Network Using OpenFlow. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :1274—1279.
Software Defined Network (SDN) is a new type of network architecture solution, and its innovation lies in decoupling traditional network system into a control plane, a data plane, and an application plane. It logically implements centralized control and management of the network, and SDN is considered to represent the development trend of the network in the future. However, SDN still faces many security challenges. Currently, the number of insecure devices is huge. Distributed Denial of Service (DDoS) attacks are one of the major network security threats.This paper focuses on the detection and mitigation of DDoS attacks in SDN. Firstly, we explore a solution to detect DDoS using Renyi entropy, and we use exponentially weighted moving average algorithm to set a dynamic threshold to adapt to changes of the network. Second, to mitigate this threat, we analyze the historical behavior of each source IP address and score it to determine the malicious source IP address, and use OpenFlow protocol to block attack source.The experimental results show that the scheme studied in this paper can effectively detect and mitigate DDoS attacks.
2021-04-27
Cao, L., Kang, Y., Wu, Q., Wu, R., Guo, X., Feng, T..  2020.  Searchable encryption cloud storage with dynamic data update to support efficient policy hiding. China Communications. 17:153–163.
Ciphertext policy attribute based encryption (CP-ABE) can provide high finegrained access control for cloud storage. However, it needs to solve problems such as property privacy protection, ciphertext search and data update in the application process. Therefore, based on CP-ABE scheme, this paper proposes a dynamically updatable searchable encryption cloud storage (DUSECS) scheme. Using the characteristics of homomorphic encryption, the encrypted data is compared to achieve efficient hiding policy. Meanwhile, adopting linked list structure, the DUSECS scheme realizes the dynamic data update and integrity detection, and the search encryption against keyword guessing attacks is achieved by combining homomorphic encryption with aggregation algorithm. The analysis of security and performance shows that the scheme is secure and efficient.
2021-03-04
Cao, L., Wan, Z..  2020.  Anonymous scheme for blockchain atomic swap based on zero-knowledge proof. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :371—374.
The blockchain's cross-chain atomic exchange uses smart contracts to replace trusted third parties, but atomic exchange cannot guarantee the anonymity of transactions, and it will inevitably increase the risk of privacy leakage. Therefore, this paper proposes an atom based on zero-knowledge proof. Improved methods of exchange to ensure the privacy of both parties in a transaction. The anonymous improvement scheme in this article uses the UTXO unconsumed model to add a new anonymous list in the blockchain. When sending assets to smart contracts, zero-knowledge proof is used to provide self-certification of ownership of the asset, and then the transaction is broken down. Only the hash value of the transaction is sent to the node, and the discarded list is used to verify the validity of the transaction, which achieves the effect of storing assets anonymously in the smart contract. At the same time, a smart contract is added when the two parties in the transaction communicate to exchange the contract address of the newly set smart contract between the two parties in the transaction. This can prevent the smart contract address information from being stolen when the two parties in the transaction communicate directly.
2019-09-04
Liang, J., Jiang, L., Cao, L., Li, L., Hauptmann, A..  2018.  Focal Visual-Text Attention for Visual Question Answering. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. :6135–6143.
Recent insights on language and vision with neural networks have been successfully applied to simple single-image visual question answering. However, to tackle real-life question answering problems on multimedia collections such as personal photos, we have to look at whole collections with sequences of photos or videos. When answering questions from a large collection, a natural problem is to identify snippets to support the answer. In this paper, we describe a novel neural network called Focal Visual-Text Attention network (FVTA) for collective reasoning in visual question answering, where both visual and text sequence information such as images and text metadata are presented. FVTA introduces an end-to-end approach that makes use of a hierarchical process to dynamically determine what media and what time to focus on in the sequential data to answer the question. FVTA can not only answer the questions well but also provides the justifications which the system results are based upon to get the answers. FVTA achieves state-of-the-art performance on the MemexQA dataset and competitive results on the MovieQA dataset.