Biblio

Filters: Author is Tao, X.  [Clear All Filters]
2021-02-16
Zhang, Z., Li, N., Xia, S., Tao, X..  2020.  Fast Cross Layer Authentication Scheme for Dynamic Wireless Network. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.
Current physical layer authentication (PLA) mechanisms are mostly designed for static communications, and the accuracy degrades significantly when used in dynamic scenarios, where the network environments and wireless channels change frequently. To improve the authentication performance, it is necessary to update the hypothesis test models and parameters in time, which however brings high computational complexity and authentication delay. In this paper, we propose a lightweight cross-layer authentication scheme for dynamic communication scenarios. We use multiple characteristics based PLA to guarantee the reliability and accuracy of authentication, and propose an upper layer assisted method to ensure the performance stability. Specifically, upper layer authentication (ULA) helps to update the PLA models and parameters. By properly choosing the period of triggering ULA, a balance between complexity and performance can be easily obtained. Simulation results show that our scheme can achieve pretty good authentication performance with reduced complexity.
2019-01-21
Wang, X., Hou, Y., Huang, X., Li, D., Tao, X., Xu, J..  2018.  Security Analysis of Key Extraction from Physical Measurements with Multiple Adversaries. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, security of secret key extraction scheme is evaluated for private communication between legitimate wireless devices. Multiple adversaries that distribute around these legitimate wireless devices eavesdrop on the data transmitted between them, and deduce the secret key. Conditional min-entropy given the view of those adversaries is utilized as security evaluation metric in this paper. Besides, the wiretap channel model and hidden Markov model (HMM) are regarded as the channel model and a dynamic programming approach is used to approximate conditional min- entropy. Two algorithms are proposed to mathematically calculate the conditional min- entropy by combining the Viterbi algorithm with the Forward algorithm. Optimal method with multiple adversaries (OME) algorithm is proposed firstly, which has superior performance but exponential computation complexity. To reduce this complexity, suboptimal method with multiple adversaries (SOME) algorithm is proposed, using performance degradation for the computation complexity reduction. In addition to the theoretical analysis, simulation results further show that the OME algorithm indeed has superior performance as well as the SOME algorithm has more efficient computation.
2017-12-20
Lu, W., Jiang, Y., Yin, C., Tao, X., Lai, P..  2017.  Security beamforming algorithms in multibeam satellite systems. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1272–1277.
This paper investigates the physical layer security in a multibeam satellite communication system, where each legitimate user is surrounded by one eavesdropper. First of all, an optimization problem is formulated to maximize the sum of achievable secrecy rate, while satisfying the on-board satellite transmit power constraint. Then, two transmit beamforming(BF) schemes, namely, the zero-forcing (ZF) and the signal-to-leakage-and-noise ratio (SLNR) BF algorithms are proposed to obtain the BF weight vectors as well as power allocation coefficients. Finally, simulation results are provided to verify the validity of the two proposed methods and demonstrate that the SLNR BF algorithm outperforms the ZF BF algorithm.