Biblio

Filters: Author is Wang, X.  [Clear All Filters]
2021-02-10
Huang, H., Wang, X., Jiang, Y., Singh, A. K., Yang, M., Huang, L..  2020.  On Countermeasures Against the Thermal Covert Channel Attacks Targeting Many-core Systems. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1—6.
Although it has been demonstrated in multiple studies that serious data leaks could occur to many-core systems thanks to the existence of the thermal covert channels (TCC), little has been done to produce effective countermeasures that are necessary to fight against such TCC attacks. In this paper, we propose a three-step countermeasure to address this critical defense issue. Specifically, the countermeasure includes detection based on signal frequency scanning, positioning affected cores, and blocking based on Dynamic Voltage Frequency Scaling (DVFS) technique. Our experiments have confirmed that on average 98% of the TCC attacks can be detected, and with the proposed defense, the bit error rate of a TCC attack can soar to 92%, literally shutting down the attack in practical terms. The performance penalty caused by the inclusion of the proposed countermeasures is only 3% for an 8×8 system.
2021-03-29
Li, J., Wang, X., Liu, S..  2020.  Hash Retrieval Method for Recaptured Images Based on Convolutional Neural Network. 2020 2nd World Symposium on Artificial Intelligence (WSAI). :79–83.
For the purpose of outdoor advertising market researching, AD images are recaptured and uploaded everyday for statistics. But the quality of the recaptured advertising images are often affected by conditions such as angle, distance, and light during the shooting process, which consequently reduce either the speed or the accuracy of the retrieving algorithm. In this paper, we proposed a hash retrieval method based on convolutional neural networks for recaptured images. The basic idea is to add a hash layer to the convolutional neural network and then extract the binary hash code output by the hash layer to perform image retrieval in lowdimensional Hamming space. Experimental results show that the retrieval performance is improved compared with the current commonly used hash retrieval methods.
Li, K., Ren, A., Ding, Y., Shi, Y., Wang, X..  2020.  Research on Decentralized Identity and Access Management Model Based on the OIDC Protocol. 2020 International Conference on E-Commerce and Internet Technology (ECIT). :252—255.

In the increasingly diverse information age, various kinds of personal information security problems continue to break out. According to the idea of combination of identity authentication and encryption services, this paper proposes a personal identity access management model based on the OIDC protocol. The model will integrate the existing personal security information and build a set of decentralized identity authentication and access management application cluster. The advantage of this model is to issue a set of authentication rules, so that all users can complete the authentication of identity access of all application systems in the same environment at a lower cost, and can well compatible and expand more categories of identity information. Therefore, this method not only reduces the number of user accounts, but also provides a unified and reliable authentication service for each application system.

2021-03-22
Wang, X., Chi, Y., Zhang, Y..  2020.  Traceable Ciphertext Policy Attribute-based Encryption Scheme with User Revocation for Cloud Storage. 2020 International Conference on Computer Engineering and Application (ICCEA). :91–95.
Ciphertext policy Attribute-based encryption (CPABE) plays an increasingly important role in the field of fine-grained access control for cloud storage. However, The exiting solution can not balance the issue of user identity tracking and user revocation. In this paper, we propose a CP-ABE scheme that supports association revocation and traceability. This scheme uses identity directory technology to realize single user revocation and associated user revocation, and the ciphertext re-encryption technology guarantees the forward security of revocation without updating the private key. In addition, we can accurately trace the identity of the user according to the decryption private key and effectively solve the problem of key abuse. This scheme is proved to be safe and traceable under the standard model, and can effectively control the computational and storage costs while maintaining functional advantages. It is suitable for the practical scenarios of tracking audit and user revocation.
2021-03-01
Xiao, R., Li, X., Pan, M., Zhao, N., Jiang, F., Wang, X..  2020.  Traffic Off-Loading over Uncertain Shared Spectrums with End-to-End Session Guarantee. 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). :1–5.
As a promising solution of spectrum shortage, spectrum sharing has received tremendous interests recently. However, under different sharing policies of different licensees, the shared spectrum is heterogeneous both temporally and spatially, and is usually uncertain due to the unpredictable activities of incumbent users. In this paper, considering the spectrum uncertainty, we propose a spectrum sharing based delay-tolerant traffic off-loading (SDTO) scheme. To capture the available heterogeneous shared bands, we adopt a mesh cognitive radio network and employ the multi-hop transmission mode. To statistically guarantee the end-to-end (E2E) session request under the uncertain spectrum supply, we formulate the SDTO scheme into a stochastic optimization problem, which is transformed into a mixed integer nonlinear programming (MINLP) problem. Then, a coarse-fine search based iterative heuristic algorithm is proposed to solve the MINLP problem. Simulation results demonstrate that the proposed SDTO scheme can well schedule the network resource with an E2E session guarantee.
2021-07-27
Wang, X., Shen, Q., Luo, W., Wu, P..  2020.  RSDS: Getting System Call Whitelist for Container Through Dynamic and Static Analysis. 2020 IEEE 13th International Conference on Cloud Computing (CLOUD). :600—608.
Container technology has been used for running multiple isolated operating system distros on a host or deploying large scale microservice-based applications. In most cases, containers share the same kernel with the host and other containers on the same host, and the application in the container can make system calls of the host kernel like a normal process on the host. Seccomp is a security mechanism for the Linux kernel, through which we can prohibit certain system calls from being executed by the program. Docker began to support the seccomp mechanism from version 1.10 and disables around 44 system calls out of 300+ by default. However, for a particular container, there are still many system calls that are unnecessary for running it allowed to be executed, and the abuse of system calls by a compromised container can trigger the security vulnerabilities of a host kernel. Unfortunately, Docker does not provide a way to get the necessary system calls for a particular container. In this paper, we propose RSDS, a method combining dynamic analysis and static analysis to get the necessary system calls for a particular container. Our experiments show that our solution can reduce system calls by 69.27%-85.89% compared to the default configuration on an x86-64 PC with Ubuntu 16.04 host OS and does not affect the functionalities of these containers.
2021-01-20
Wang, H., Yang, J., Wang, X., Li, F., Liu, W., Liang, H..  2020.  Feature Fingerprint Extraction and Abnormity Diagnosis Method of the Vibration on the GIS. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1—4.

Mechanical faults of Gas Insulated Switchgear (GIS) often occurred, which may cause serious losses. Detecting vibration signal was effective for condition monitoring and fault diagnosis of GIS. The vibration characteristic of GIS in service was detected and researched based on a developed testing system in this paper, and feature fingerprint extraction method was proposed to evaluate vibration characteristics and diagnose mechanical defects. Through analyzing the spectrum of the vibration signal, we could see that vibration frequency of operating GIS was about 100Hz under normal condition. By means of the wavelet transformation, the vibration fingerprint was extracted for the diagnosis of mechanical vibration. The mechanical vibration characteristic of GIS including circuit breaker and arrester in service was detected, we could see that the frequency distribution of abnormal vibration signal was wider, it contained a lot of high harmonic components besides the 100Hz component, and the vibration acoustic fingerprint was totally different from the normal ones, that is, by comparing the frequency spectra and vibration fingerprint, the mechanical faults of GIS could be found effectively.

2021-03-30
Ben-Yaakov, Y., Meyer, J., Wang, X., An, B..  2020.  User detection of threats with different security measures. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.

2020-11-30
Li, X., Deng, M., Wang, X., Li, H., Yu, M..  2019.  Synthesis and magnetic properties of Fe-doped CdS nanorods. Micro Nano Letters. 14:275–279.
Hexagonal CdS and Fe-doped CdS nanorods were synthesised by a facile hydrothermal method and characterised by X-ray diffraction, energy dispersive X-ray spectroscopy, UV-vis absorption, photoluminescence, and X-ray photoelectron spectroscopy. The magnetic properties of undoped and Fe-doped CdS nanorods were investigated at room temperature. The experimental results demonstrate that the ferromagnetism of the Fe-doped CdS nanorods differs from that of the undoped CdS nanorods. The remanence magnetisation (Mr) and the coercive field (Hc) of the Fe-doped CdS nanorods were 4.9 × 10-3 emu/g and 270.6 Oe, respectively, while photoluminescence properties were not influenced by doping. First-principle calculations show that the ferromagnetism in Fe-doped CdS nanocrystal arose not only from the Fe dopants but also from the Cd vacancies, although the main contribution was due to the Fe dopants.
2019-04-05
Li, X., Cui, X., Shi, L., Liu, C., Wang, X..  2018.  Constructing Browser Fingerprint Tracking Chain Based on LSTM Model. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :213-218.
Web attacks have increased rapidly in recent years. However, traditional methods are useless to track web attackers. Browser fingerprint, as a stateless tracking technique, can be used to solve this problem. Given browser fingerprint changes easily and frequently, it is easy to lose track. Therefore, we need to improve the stability of browser fingerprint by linking the new one to the previous chain. In this paper, we propose LSTM model to learn the potential relationship of browser fingerprint evolution. In addition, we adjust the input feature vector to time series and construct training set to train the model. The results show that our model can construct the tracking chain perfectly well with average ownership up to 99.3%.
2019-01-16
Jia, Z., Cui, X., Liu, Q., Wang, X., Liu, C..  2018.  Micro-Honeypot: Using Browser Fingerprinting to Track Attackers. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :197–204.
Web attacks have proliferated across the whole Internet in recent years. To protect websites, security vendors and researchers collect attack information using web honeypots. However, web attackers can hide themselves by using stepping stones (e.g., VPN, encrypted proxy) or anonymous networks (e.g., Tor network). Conventional web honeypots lack an effective way to gather information about an attacker's identity, which raises a big obstacle for cybercrime traceability and forensics. Traditional forensics methods are based on traffic analysis; it requires that defenders gain access to the entire network. It is not suitable for honeypots. In this paper, we present the design, implementation, and deployment of the Micro-Honeypot, which aims to use the browser fingerprinting technique to track a web attacker. Traditional honeypot lure attackers and records attacker's activity. Micro-Honeypot is deployed in a honeypot. It will run and gather identity information when an attacker visits the honeypot. Our preliminary results show that Micro-Honeypot could collect more information and track attackers although they might have used proxies or anonymous networks to hide themselves.
2019-01-21
Lian, J., Wang, X., Noshad, M., Brandt-Pearce, M..  2018.  Optical Wireless Interception Vulnerability Analysis of Visible Light Communication System. 2018 IEEE International Conference on Communications (ICC). :1–6.
Visible light communication is a solution for high-security wireless data transmission. In this paper, we first analyze the potential vulnerability of the system from eavesdropping outside the room. By setting up a signal to noise ratio threshold, we define a vulnerable area outside of the room through a window. We compute the receiver aperture needed to capture the signal and what portion of the space is most vulnerable to eavesdropping. Based on the analysis, we propose a solution to improve the security by optimizing the modulation efficiency of each LED in the indoor lamp. The simulation results show that the proposed solution can improve the security considerably while maintaining the indoor communication performance.
Wang, X., Hou, Y., Huang, X., Li, D., Tao, X., Xu, J..  2018.  Security Analysis of Key Extraction from Physical Measurements with Multiple Adversaries. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, security of secret key extraction scheme is evaluated for private communication between legitimate wireless devices. Multiple adversaries that distribute around these legitimate wireless devices eavesdrop on the data transmitted between them, and deduce the secret key. Conditional min-entropy given the view of those adversaries is utilized as security evaluation metric in this paper. Besides, the wiretap channel model and hidden Markov model (HMM) are regarded as the channel model and a dynamic programming approach is used to approximate conditional min- entropy. Two algorithms are proposed to mathematically calculate the conditional min- entropy by combining the Viterbi algorithm with the Forward algorithm. Optimal method with multiple adversaries (OME) algorithm is proposed firstly, which has superior performance but exponential computation complexity. To reduce this complexity, suboptimal method with multiple adversaries (SOME) algorithm is proposed, using performance degradation for the computation complexity reduction. In addition to the theoretical analysis, simulation results further show that the OME algorithm indeed has superior performance as well as the SOME algorithm has more efficient computation.
2019-05-01
Gundabolu, S., Wang, X..  2018.  On-chip Data Security Against Untrustworthy Software and Hardware IPs in Embedded Systems. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :644–649.

State-of-the-art system-on-chip (SoC) field programmable gate arrays (FPGAs) integrate hard powerful ARM processor cores and the reconfigurable logic fabric on a single chip in addition to many commonly needed high performance and high-bandwidth peripherals. The increasing reliance on untrustworthy third-party IP (3PIP) cores, including both hardware and software in FPGA-based embedded systems has made the latter increasingly vulnerable to security attacks. Detection of trojans in 3PIPs is extremely difficult to current static detection methods since there is no golden reference model for 3PIPs. Moreover, many FPGA-based embedded systems do not have the support of security services typically found in operating systems. In this paper, we present our run-time, low-cost, and low-latency hardware and software based solution for protecting data stored in on-chip memory blocks, which has attracted little research attention. The implemented memory protection design consists of a hierarchical top-down structure and controls memory access from software IPs running on the processor and hardware IPs running in the FPGA, based on a set of rules or access rights configurable at run time. Additionally, virtual addressing and encryption of data for each memory help protect confidentiality of data in case of a failure of the memory protection unit, making it hard for the attacker to gain access to the data stored in the memory. The design is implemented and tested on the Intel (Altera) DE1-SoC board featuring a SoC FPGA that integrates a dual-core ARM processor with reconfigurable logic and hundreds of memory blocks. The experimental results and case studies show that the protection model is successful in eliminating malicious IPs from the system without need for reconfiguration of the FPGA. It prevents unauthorized accesses from untrusted IPs, while arbitrating access from trusted IPs generating legal memory requests, without incurring a serious area or latency penalty.

2019-05-20
Hu, W., Ardeshiricham, A., Gobulukoglu, M. S., Wang, X., Kastner, R..  2018.  Property Specific Information Flow Analysis for Hardware Security Verification. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1-8.

Hardware information flow analysis detects security vulnerabilities resulting from unintended design flaws, timing channels, and hardware Trojans. These information flow models are typically generated in a general way, which includes a significant amount of redundancy that is irrelevant to the specified security properties. In this work, we propose a property specific approach for information flow security. We create information flow models tailored to the properties to be verified by performing a property specific search to identify security critical paths. This helps find suspicious signals that require closer inspection and quickly eliminates portions of the design that are free of security violations. Our property specific trimming technique reduces the complexity of the security model; this accelerates security verification and restricts potential security violations to a smaller region which helps quickly pinpoint hardware security vulnerabilities.

2020-11-23
Wang, X., Li, J..  2018.  Design of Intelligent Home Security Monitoring System Based on Android. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :2621–2624.
In view of the problem that the health status and safety monitoring of the traditional intelligent home are mainly dependent on the manual inspection, this paper introduces the intelligent home-based remote monitoring system by introducing the Internet-based Internet of Things technology into the intelligent home condition monitoring and safety assessment. The system's Android remote operation based on the MVP model to develop applications, the use of neural networks to deal with users daily use of operational data to establish the network data model, combined with S3C2440A microcontrollers in the gateway to the embedded Linux to facilitate different intelligent home drivers development. Finally, the power line communication network is used to connect the intelligent electrical appliances to the gateway. By calculating the success rate of the routing nodes, the success rate of the network nodes of 15 intelligent devices is 98.33%. The system can intelligent home many electrical appliances at the same time monitoring, to solve the system data and network congestion caused by the problem can not he security monitoring.
2020-11-20
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
2019-03-15
Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M..  2018.  A Neural Network Trojan Detection Method Based on Particle Swarm Optimization. 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). :1-3.

Hardware Trojans (HTs) are malicious modifications of the original circuits intended to leak information or cause malfunction. Based on the Side Channel Analysis (SCA) technology, a set of hardware Trojan detection platform is designed for RTL circuits on the basis of HSPICE power consumption simulation. Principal Component Analysis (PCA) algorithm is used to reduce the dimension of power consumption data. An intelligent neural networks (NN) algorithm based on Particle Swarm Optimization (PSO) is introduced to achieve HTs recognition. Experimental results show that the detection accuracy of PSO NN method is much better than traditional BP NN method.

2019-01-21
Chen, Z., Wang, X..  2018.  A Method for Improving Physical Layer Security in Visible Light Communication Networks. 2018 IEEE Conference on Standards for Communications and Networking (CSCN). :1–5.
In this paper, a method is proposed for improving the physical layer security for indoor visible light communication (VLC) networks with angle diversity transmitters. An angle diversity transmitter usually consists of multiple narrow-beam light-emitting diode (LED) elements with different orientations. Angle diversity transmitters are suitable for confidential data transmission, since data transmission via narrow light beams can effectively avoid the leakage of messages. In order to improve security performance, protection zones are introduced to the systems with angle diversity transmitters. Simulation results show that over 50% performance improvement can be obtained by adding protection zones.
2018-03-05
Shu, F., Li, M., Chen, S., Wang, X., Li, F..  2017.  Research on Network Security Protection System Based on Dynamic Modeling. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1602–1605.
A dynamic modeling method for network security vulnerabilities which is composed of the design of safety evaluation model, the design of risk model of intrusion event and the design of vulnerability risk model. The model based on identification of vulnerabilities values through dynamic forms can improve the tightness between vulnerability scanning system, intrusion prevention system and security configuration verification system. Based on this model, the network protection system which is most suitable for users can be formed, and the protection capability of the network protection system can be improved.
Shu, F., Li, M., Chen, S., Wang, X., Li, F..  2017.  Research on Network Security Protection System Based on Dynamic Modeling. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1602–1605.
A dynamic modeling method for network security vulnerabilities which is composed of the design of safety evaluation model, the design of risk model of intrusion event and the design of vulnerability risk model. The model based on identification of vulnerabilities values through dynamic forms can improve the tightness between vulnerability scanning system, intrusion prevention system and security configuration verification system. Based on this model, the network protection system which is most suitable for users can be formed, and the protection capability of the network protection system can be improved.
2018-06-07
Yang, Y., Chen, J., Huang, Y., Wang, X..  2017.  Security-reliability tradeoff for cooperative multi-relay and jammer selection in Nakagami-m fading channels. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :181–186.
In this paper, we analyze the security-reliability tradeoff (SRT) performance of the multi-relay cooperative networks over Nakagami-m fading channels. By considering the reliability of the first phase from the source to relay, a cooperative jamming (CJ) assisted secure transmission scheme is investigated to improve the security performance of the considered system. Specifically, we derive the approximate closed-form expression of the outage probability (OP) and exact closed-form expression of the intercepted probability (IP) for the CJ scheme to evaluate the SRT performance of the system. Finally, the simulation results verify the validity of our theoretical derivations and the advantage of the CJ scheme compared to the traditional scheme with no cooperative jammer.
2018-05-01
Wang, X., Zhou, S..  2017.  Accelerated Stochastic Gradient Method for Support Vector Machines Classification with Additive Kernel. 2017 First International Conference on Electronics Instrumentation Information Systems (EIIS). :1–6.

Support vector machines (SVMs) have been widely used for classification in machine learning and data mining. However, SVM faces a huge challenge in large scale classification tasks. Recent progresses have enabled additive kernel version of SVM efficiently solves such large scale problems nearly as fast as a linear classifier. This paper proposes a new accelerated mini-batch stochastic gradient descent algorithm for SVM classification with additive kernel (AK-ASGD). On the one hand, the gradient is approximated by the sum of a scalar polynomial function for each feature dimension; on the other hand, Nesterov's acceleration strategy is used. The experimental results on benchmark large scale classification data sets show that our proposed algorithm can achieve higher testing accuracies and has faster convergence rate.

2018-02-02
Zha, X., Wang, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., Zheng, K..  2017.  Analytic model on data security in VANETs. 2017 17th International Symposium on Communications and Information Technologies (ISCIT). :1–6.

Fast-changing topologies and uncoordinated transmissions are two critical challenges of implementing data security in vehicular ad-hoc networks (VANETs). We propose a new protocol, where transmitters adaptively switch between backing off retransmissions and changing keys to improve success rate. A new 3-dimensional (3-D) Markov model, which can analyze the proposed protocol with symmetric or asymmetric keys in terms of data security and connectivity, is developed. Analytical results, validated by simulations, show that the proposed protocol achieves substantially improved resistance against collusion attacks.

2018-02-15
Wang, X., Lin, S., Wang, S., Shi, J., Zhang, C..  2017.  A multi-fault diagnosis strategy of electro-hydraulic servo actuation system based on extended Kalman filter. 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). :614–619.

Electro-hydraulic servo actuation system is a mechanical, electrical and hydraulic mixing complex system. If it can't be repaired for a long time, it is necessary to consider the possibility of occurrence of multiple faults. Considering this possibility, this paper presents an extended Kalman filter (EKF) based method for multiple faults diagnosis. Through analysing the failure modes and mechanism of the electro-hydraulic servo actuation system and modelling selected typical failure modes, the relationship between the key parameters of the system and the faults is obtained. The extended Kalman filter which is a commonly used algorithm for estimating parameters is used to on-line fault diagnosis. Then use the extended Kalman filter to diagnose potential faults. The simulation results show that the multi-fault diagnosis method based on extended Kalman filter is effective for multi-fault diagnosis of electro-hydraulic servo actuation system.