Biblio

Filters: Author is Xu, J.  [Clear All Filters]
2021-02-03
Xu, J., Howard, A..  2020.  Would you Take Advice from a Robot? Developing a Framework for Inferring Human-Robot Trust in Time-Sensitive Scenarios 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :814—820.

Trust is a key element for successful human-robot interaction. One challenging problem in this domain is the issue of how to construct a formulation that optimally models this trust phenomenon. This paper presents a framework for modeling human-robot trust based on representing the human decision-making process as a formulation based on trust states. Using this formulation, we then discuss a generalized model of human-robot trust based on Hidden Markov Models and Logistic Regression. The proposed approach is validated on datasets collected from two different human subject studies in which the human is provided the ability to take advice from a robot. Both experimental scenarios were time-sensitive, in that a decision had to be made by the human in a limited time period, but each scenario featured different levels of cognitive load. The experimental results demonstrate that the proposed formulation can be utilized to model trust, in which the system can predict whether the human will decide to take advice (or not) from the robot. It was found that our prediction performance degrades after the robot made a mistake. The validation of this approach on two scenarios implies that this model can be applied to other interactive scenarios as long as the interaction dynamics fits into the proposed formulation. Directions for future improvements are discussed.

2021-01-11
Zhang, H., Zhang, D., Chen, H., Xu, J..  2020.  Improving Efficiency of Pseudonym Revocation in VANET Using Cuckoo Filter. 2020 IEEE 20th International Conference on Communication Technology (ICCT). :763–769.
In VANETs, pseudonyms are often used to replace the identity of vehicles in communication. When vehicles drive out of the network or misbehave, their pseudonym certificates need to be revoked by the certificate authority (CA). The certificate revocation lists (CRLs) are usually used to store the revoked certificates before their expiration. However, using CRLs would incur additional storage, communication and computation overhead. Some existing schemes have proposed to use Bloom Filter to compress the original CRLs, but they are unable to delete the expired certificates and introduce the false positive problem. In this paper, we propose an improved pseudonym certificates revocation scheme, using Cuckoo Filter for compression to reduce the impact of these problems. In order to optimize deletion efficiency, we propose the concept of Certificate Expiration List (CEL) which can be implemented with priority queue. The experimental results show that our scheme can effectively reduce the storage and communication overhead of pseudonym certificates revocation, while retaining moderately low false positive rates. In addition, our scheme can also greatly improve the lookup performance on CRLs, and reduce the revocation operation costs by allowing deletion.
2021-02-03
Xu, J., Howard, A..  2020.  How much do you Trust your Self-Driving Car? Exploring Human-Robot Trust in High-Risk Scenarios 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :4273—4280.

Trust is an important characteristic of successful interactions between humans and agents in many scenarios. Self-driving scenarios are of particular relevance when discussing the issue of trust due to the high-risk nature of erroneous decisions being made. The present study aims to investigate decision-making and aspects of trust in a realistic driving scenario in which an autonomous agent provides guidance to humans. To this end, a simulated driving environment based on a college campus was developed and presented. An online and an in-person experiment were conducted to examine the impacts of mistakes made by the self-driving AI agent on participants’ decisions and trust. During the experiments, participants were asked to complete a series of driving tasks and make a sequence of decisions in a time-limited situation. Behavior analysis indicated a similar relative trend in the decisions across these two experiments. Survey results revealed that a mistake made by the self-driving AI agent at the beginning had a significant impact on participants’ trust. In addition, similar overall experience and feelings across the two experimental conditions were reported. The findings in this study add to our understanding of trust in human-robot interaction scenarios and provide valuable insights for future research work in the field of human-robot trust.

2020-11-04
Yuan, X., Zhang, T., Shama, A. A., Xu, J., Yang, L., Ellis, J., He, W., Waters, C..  2019.  Teaching Cybersecurity Using Guided Inquiry Collaborative Learning. 2019 IEEE Frontiers in Education Conference (FIE). :1—6.

This Innovate Practice Full Paper describes our experience with teaching cybersecurity topics using guided inquiry collaborative learning. The goal is to not only develop the students' in-depth technical knowledge, but also “soft skills” such as communication, attitude, team work, networking, problem-solving and critical thinking. This paper reports our experience with developing and using the Guided Inquiry Collaborative Learning materials on the topics of firewall and IPsec. Pre- and post-surveys were conducted to access the effectiveness of the developed materials and teaching methods in terms of learning outcome, attitudes, learning experience and motivation. Analysis of the survey data shows that students had increased learning outcome, participation in class, and interest with Guided Inquiry Collaborative Learning.

2020-11-16
Zhang, C., Xu, C., Xu, J., Tang, Y., Choi, B..  2019.  GEMˆ2-Tree: A Gas-Efficient Structure for Authenticated Range Queries in Blockchain. 2019 IEEE 35th International Conference on Data Engineering (ICDE). :842–853.
Blockchain technology has attracted much attention due to the great success of the cryptocurrencies. Owing to its immutability property and consensus protocol, blockchain offers a new solution for trusted storage and computation services. To scale up the services, prior research has suggested a hybrid storage architecture, where only small meta-data are stored onchain and the raw data are outsourced to off-chain storage. To protect data integrity, a cryptographic proof can be constructed online for queries over the data stored in the system. However, the previous schemes only support simple key-value queries. In this paper, we take the first step toward studying authenticated range queries in the hybrid-storage blockchain. The key challenge lies in how to design an authenticated data structure (ADS) that can be efficiently maintained by the blockchain, in which a unique gas cost model is employed. By analyzing the performance of the existing techniques, we propose a novel ADS, called GEM2-tree, which is not only gas-efficient but also effective in supporting authenticated queries. To further reduce the ADS maintenance cost without sacrificing much the query performance, we also propose an optimized structure, GEM2*-tree, by designing a two-level index structure. Theoretical analysis and empirical evaluation validate the performance of the proposed ADSs.
2019-09-26
Xu, J., Ying, C., Tan, S., Sun, Z., Wang, P., Sun, Z..  2018.  An Attribute-Based Searchable Encryption Scheme Supporting Trapdoor Updating. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :7-14.
In the cloud computing environment, a growing number of users share their own data files through cloud storage. However, there will be some security and privacy problems due to the reason that the cloud is not completely trusted, so it needs to be resolved by access control. Attribute-based encryption (ABE) and searchable encryption (SE) can solve fine-grained access control. At present, researchers combine the two to propose an attribute-based searchable encryption scheme and achieved remarkable results. Nevertheless, most of existing attribute-based searchable encryption schemes cannot resist online/offline keyword guessing attack. To solve the problem, we present an attribute-based (CP-ABE) searchable encryption scheme that supports trapdoor updating (CSES-TU). In this scheme, the data owner can formulate an access strategy for the encrypted data. Only the attributes of the data user are matched with the strategy can the effective trapdoor be generated and the ciphertext be searched, and that this scheme will update trapdoors at the same time. Even if the keywords are the same, new trapdoors will be generated every time when the keyword is searched, thus minimizing the damage caused by online/offline keyword guessing attack. Finally, the performance of the scheme is analyzed, and the proof of correctness and security are given at the same time.
2019-01-21
Wang, X., Hou, Y., Huang, X., Li, D., Tao, X., Xu, J..  2018.  Security Analysis of Key Extraction from Physical Measurements with Multiple Adversaries. 2018 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
In this paper, security of secret key extraction scheme is evaluated for private communication between legitimate wireless devices. Multiple adversaries that distribute around these legitimate wireless devices eavesdrop on the data transmitted between them, and deduce the secret key. Conditional min-entropy given the view of those adversaries is utilized as security evaluation metric in this paper. Besides, the wiretap channel model and hidden Markov model (HMM) are regarded as the channel model and a dynamic programming approach is used to approximate conditional min- entropy. Two algorithms are proposed to mathematically calculate the conditional min- entropy by combining the Viterbi algorithm with the Forward algorithm. Optimal method with multiple adversaries (OME) algorithm is proposed firstly, which has superior performance but exponential computation complexity. To reduce this complexity, suboptimal method with multiple adversaries (SOME) algorithm is proposed, using performance degradation for the computation complexity reduction. In addition to the theoretical analysis, simulation results further show that the OME algorithm indeed has superior performance as well as the SOME algorithm has more efficient computation.
2020-12-01
Xu, J., Howard, A..  2018.  The Impact of First Impressions on Human- Robot Trust During Problem-Solving Scenarios. 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :435—441.

With recent advances in robotics, it is expected that robots will become increasingly common in human environments, such as in the home and workplaces. Robots will assist and collaborate with humans on a variety of tasks. During these collaborations, it is inevitable that disagreements in decisions would occur between humans and robots. Among factors that lead to which decision a human should ultimately follow, theirs or the robot, trust is a critical factor to consider. This study aims to investigate individuals' behaviors and aspects of trust in a problem-solving situation in which a decision must be made in a bounded amount of time. A between-subject experiment was conducted with 100 participants. With the assistance of a humanoid robot, participants were requested to tackle a cognitive-based task within a given time frame. Each participant was randomly assigned to one of the following initial conditions: 1) a working robot in which the robot provided a correct answer or 2) a faulty robot in which the robot provided an incorrect answer. Impacts of the faulty robot behavior on participant's decision to follow the robot's suggested answer were analyzed. Survey responses about trust were collected after interacting with the robot. Results indicated that the first impression has a significant impact on participant's behavior of trusting a robot's advice during a disagreement. In addition, this study discovered evidence supporting that individuals still have trust in a malfunctioning robot even after they have observed a robot's faulty behavior.

Xu, J., Bryant, D. G., Howard, A..  2018.  Would You Trust a Robot Therapist? Validating the Equivalency of Trust in Human-Robot Healthcare Scenarios 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). :442—447.

With the recent advances in computing, artificial intelligence (AI) is quickly becoming a key component in the future of advanced applications. In one application in particular, AI has played a major role - that of revolutionizing traditional healthcare assistance. Using embodied interactive agents, or interactive robots, in healthcare scenarios has emerged as an innovative way to interact with patients. As an essential factor for interpersonal interaction, trust plays a crucial role in establishing and maintaining a patient-agent relationship. In this paper, we discuss a study related to healthcare in which we examine aspects of trust between humans and interactive robots during a therapy intervention in which the agent provides corrective feedback. A total of twenty participants were randomly assigned to receive corrective feedback from either a robotic agent or a human agent. Survey results indicate trust in a therapy intervention coupled with a robotic agent is comparable to that of trust in an intervention coupled with a human agent. Results also show a trend that the agent condition has a medium-sized effect on trust. In addition, we found that participants in the robot therapist condition are 3.5 times likely to have trust involved in their decision than the participants in the human therapist condition. These results indicate that the deployment of interactive robot agents in healthcare scenarios has the potential to maintain quality of health for future generations.

Yang, R., Ouyang, X., Chen, Y., Townend, P., Xu, J..  2018.  Intelligent Resource Scheduling at Scale: A Machine Learning Perspective. 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE). :132—141.

Resource scheduling in a computing system addresses the problem of packing tasks with multi-dimensional resource requirements and non-functional constraints. The exhibited heterogeneity of workload and server characteristics in Cloud-scale or Internet-scale systems is adding further complexity and new challenges to the problem. Compared with,,,, existing solutions based on ad-hoc heuristics, Machine Learning (ML) has the potential to improve further the efficiency of resource management in large-scale systems. In this paper we,,,, will describe and discuss how ML could be used to understand automatically both workloads and environments, and to help to cope with scheduling-related challenges such as consolidating co-located workloads, handling resource requests, guaranteeing application's QoSs, and mitigating tailed stragglers. We will introduce a generalized ML-based solution to large-scale resource scheduling and demonstrate its effectiveness through a case study that deals with performance-centric node classification and straggler mitigation. We believe that an MLbased method will help to achieve architectural optimization and efficiency improvement.

2019-02-22
Gaston, J., Narayanan, M., Dozier, G., Cothran, D. L., Arms-Chavez, C., Rossi, M., King, M. C., Xu, J..  2018.  Authorship Attribution vs. Adversarial Authorship from a LIWC and Sentiment Analysis Perspective. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :920-927.

Although Stylometry has been effectively used for Authorship Attribution, there is a growing number of methods being developed that allow authors to mask their identity [2, 13]. In this paper, we investigate the usage of non-traditional feature sets for Authorship Attribution. By using non-traditional feature sets, one may be able to reveal the identity of adversarial authors who are attempting to evade detection from Authorship Attribution systems that are based on more traditional feature sets. In addition, we demonstrate how GEFeS (Genetic & Evolutionary Feature Selection) can be used to evolve high-performance hybrid feature sets composed of two non-traditional feature sets for Authorship Attribution: LIWC (Linguistic Inquiry & Word Count) and Sentiment Analysis. These hybrids were able to reduce the Adversarial Effectiveness on a test set presented in [2] by approximately 33.4%.

2019-03-04
Zhu, Z., Jiang, R., Jia, Y., Xu, J., Li, A..  2018.  Cyber Security Knowledge Graph Based Cyber Attack Attribution Framework for Space-ground Integration Information Network. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :870–874.
Comparing with the traditional Internet, the space-ground integration information network has more complicated topology, wider coverage area and is more difficult to find the source of attacks. In this paper, a cyber attack attribution framework is proposed to trace the attack source in space-ground integration information network. First, we constructs a cyber security knowledge graph for space-ground integration information network. An automated attributing framework for cyber-attack is proposed. It attributes the source of the attack by querying the cyber security knowledge graph we constructed. Experiments show that the proposed framework can attribute network attacks simply, effectively, and automatically.
2018-03-19
Faust, C., Dozier, G., Xu, J., King, M. C..  2017.  Adversarial Authorship, Interactive Evolutionary Hill-Climbing, and Author CAAT-III. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–8.

We are currently witnessing the development of increasingly effective author identification systems (AISs) that have the potential to track users across the internet based on their writing style. In this paper, we discuss two methods for providing user anonymity with respect to writing style: Adversarial Stylometry and Adversarial Authorship. With Adversarial Stylometry, a user attempts to obfuscate their writing style by consciously altering it. With Adversarial Authorship, a user can select an author cluster target (ACT) and write toward this target with the intention of subverting an AIS so that the user's writing sample will be misclassified Our results show that Adversarial Authorship via interactive evolutionary hill-climbing outperforms Adversarial Stylometry.

2018-03-05
Fan, Z., Wu, H., Xu, J., Tang, Y..  2017.  An Optimization Algorithm for Spatial Information Network Self-Healing Based on Software Defined Network. 2017 12th International Conference on Computer Science and Education (ICCSE). :369–374.

Spatial information network is an important part of the integrated space-terrestrial information network, its bearer services are becoming increasingly complex, and real-time requirements are also rising. Due to the structural vulnerability of the spatial information network and the dynamics of the network, this poses a serious challenge to how to ensure reliable and stable data transmission. The structural vulnerability of the spatial information network and the dynamics of the network brings a serious challenge of ensuring reliable and stable data transmission. Software Defined Networking (SDN), as a new network architecture, not only can quickly adapt to new business, but also make network reconfiguration more intelligent. In this paper, SDN is used to design the spatial information network architecture. An optimization algorithm for network self-healing based on SDN is proposed to solve the failure of switching node. With the guarantee of Quality of Service (QoS) requirement, the link is updated with the least link to realize the fast network reconfiguration and recovery. The simulation results show that the algorithm proposed in this paper can effectively reduce the delay caused by fault recovery.