Biblio

Filters: Author is Chen, D.  [Clear All Filters]
2021-04-27
Chen, Q., Chen, D., Gong, J..  2020.  Weighted Predictive Coding Methods for Block-Based Compressive Sensing of Images. 2020 3rd International Conference on Unmanned Systems (ICUS). :587–591.
Compressive sensing (CS) is beneficial for unmanned reconnaissance systems to obtain high-quality images with limited resources. The existing prediction methods for block-based compressive sensing of images can be regarded as the particular coefficients of weighted predictive coding. To find better prediction coefficients for BCS, this paper proposes two weighted prediction methods. The first method converts the prediction model of measurements into a prediction model of image blocks. The prediction weights are obtained by training the prediction model of image blocks offline, which avoiding the influence of the sampling rates on the prediction model of measurements. Another method is to calculate the prediction coefficients adaptively based on the average energy of measurements, which can adjust the weights based on the measurements. Compared with existing methods, the proposed prediction methods for BCS of images can further improve the reconstruction image quality.
2020-11-04
Liang, Y., He, D., Chen, D..  2019.  Poisoning Attack on Load Forecasting. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :1230—1235.

Short-term load forecasting systems for power grids have demonstrated high accuracy and have been widely employed for commercial use. However, classic load forecasting systems, which are based on statistical methods, are subject to vulnerability from training data poisoning. In this paper, we demonstrate a data poisoning strategy that effectively corrupts the forecasting model even in the presence of outlier detection. To the best of our knowledge, poisoning attack on short-term load forecasting with outlier detection has not been studied in previous works. Our method applies to several forecasting models, including the most widely-adapted and best-performing ones, such as multiple linear regression (MLR) and neural network (NN) models. Starting with the MLR model, we develop a novel closed-form solution to quickly estimate the new MLR model after a round of data poisoning without retraining. We then employ line search and simulated annealing to find the poisoning attack solution. Furthermore, we use the MLR attacking solution to generate a numerical solution for other models, such as NN. The effectiveness of our algorithm has been tested on the Global Energy Forecasting Competition (GEFCom2012) data set with the presence of outlier detection.

2020-11-30
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Design of Distribution Devices for Smart Grid Based on Magnetically Tunable Nanocomposite. IEEE Transactions on Power Electronics. 33:2083–2099.
This paper designs three distribution devices for the smart grid, which are, respectively, novel transformer with dc bias restraining ability, energy-saving contactor, and controllable reactor with adjustable intrinsic magnetic state based on the magnetically tunable nanocomposite material core. First, the magnetic performance of this magnetic material was analyzed and the magnetic properties processing method was put forward. One kind of nanocomposite which is close to the semihard magnetic state with low coercivity and high remanence was attained. Nanocomposite with four magnetic properties was processed and prepared using the distribution devices design. Second, in order to adjust the magnetic state better, the magnetization and demagnetization control circuit based on the single-phase supply power of rectification and inverter for the nanocomposite magnetic performance adjustment has been designed, which can mutual transform the material's soft and hard magnetic phases. Finally, based on the nanocomposite and the control circuit, a novel power transformer, an energy-saving contactor, and a magnetically controllable reactor were manufactured for the smart grid. The maintained remanence of the nanocomposite core after the magnetization could neutralize the dc bias magnetic flux in the transformer main core without changing the transformer neutral point connection mode, could pull in the contactor movable core instead of the traditional electromagnetic-type fixed core, and could adjust the reactor core saturation degree instead of the traditional electromagnetic coil. The simulation and experimental results verify the correctness of the design, which provides reliable, intelligent, interactive, and energy-saving power equipment for the smart power grids safe operation.
Chen, Z., Bai, B., Chen, D., Chai, W..  2018.  Direct-Current and Alternate-Decay-Current Hybrid Integrative Power Supplies Design Applied to DC Bias Treatment. IEEE Transactions on Power Electronics. 33:10251–10264.
This paper proposes a novel kind of direct-current and alternate-decay-current hybrid integrative magnetization and demagnetization power supplies applied to transformer dc bias treatment based on a nanocomposite magnetic material. First, according to the single-phase transformer structure, one dc bias magnetic compensation mechanism was provided. The dc bias flux in the transformer main core could be eliminated directionally by utilizing the material remanence. Second, for the rapid response characteristic of the magnetic material to an external magnetic field, one positive and negative dc magnetization superimposed decaying ac demagnetization hybrid integrative power supplies based on single-phase rectifier circuit and inverter circuit was designed. In order to accurately control the magnetic field strength by which a good de/-magnetization effect could be achieved, this paper adopts the double-loop control technology of the magnetic field strength and magnetizing current for the nanocomposite magnetic state adjustment. Finally, two 10 kVA transformers and the experiment module of the hybrid integrative power supplies were manufactured and built. Experimental results showed that the integrated power supplies have good de/-magnetization effect and practicability, proving the validity and feasibility of the proposed scheme.
2019-05-01
Chen, D., Chen, W., Chen, J., Zheng, P., Huang, J..  2018.  Edge Detection and Image Segmentation on Encrypted Image with Homomorphic Encryption and Garbled Circuit. 2018 IEEE International Conference on Multimedia and Expo (ICME). :1-6.

Edge detection is one of the most important topics of image processing. In the scenario of cloud computing, performing edge detection may also consider privacy protection. In this paper, we propose an edge detection and image segmentation scheme on an encrypted image with Sobel edge detector. We implement Gaussian filtering and Sobel operator on the image in the encrypted domain with homomorphic property. By implementing an adaptive threshold decision algorithm in the encrypted domain, we obtain a threshold determined by the image distribution. With the technique of garbled circuit, we perform comparison in the encrypted domain and obtain the edge of the image without decrypting the image in advanced. We then propose an image segmentation scheme on the encrypted image based on the detected edges. Our experiments demonstrate the viability and effectiveness of the proposed encrypted image edge detection and segmentation.

2018-02-06
Chen, D., Irwin, D..  2017.  Weatherman: Exposing Weather-Based Privacy Threats in Big Energy Data. 2017 IEEE International Conference on Big Data (Big Data). :1079–1086.

Smart energy meters record electricity consumption and generation at fine-grained intervals, and are among the most widely deployed sensors in the world. Energy data embeds detailed information about a building's energy-efficiency, as well as the behavior of its occupants, which academia and industry are actively working to extract. In many cases, either inadvertently or by design, these third-parties only have access to anonymous energy data without an associated location. The location of energy data is highly useful and highly sensitive information: it can provide important contextual information to improve big data analytics or interpret their results, but it can also enable third-parties to link private behavior derived from energy data with a particular location. In this paper, we present Weatherman, which leverages a suite of analytics techniques to localize the source of anonymous energy data. Our key insight is that energy consumption data, as well as wind and solar generation data, largely correlates with weather, e.g., temperature, wind speed, and cloud cover, and that every location on Earth has a distinct weather signature that uniquely identifies it. Weatherman represents a serious privacy threat, but also a potentially useful tool for researchers working with anonymous smart meter data. We evaluate Weatherman's potential in both areas by localizing data from over one hundred smart meters using a weather database that includes data from over 35,000 locations. Our results show that Weatherman localizes coarse (one-hour resolution) energy consumption, wind, and solar data to within 16.68km, 9.84km, and 5.12km, respectively, on average, which is more accurate using much coarser resolution data than prior work on localizing only anonymous solar data using solar signatures.

2018-11-19
Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G..  2017.  Coherent Online Video Style Transfer. 2017 IEEE International Conference on Computer Vision (ICCV). :1114–1123.

Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.