Biblio

Filters: Author is He, D.  [Clear All Filters]
2021-04-27
Chen, B., Wu, L., Li, L., Choo, K. R., He, D..  2020.  A Parallel and Forward Private Searchable Public-Key Encryption for Cloud-Based Data Sharing. IEEE Access. 8:28009–28020.
Data sharing through the cloud is flourishing with the development of cloud computing technology. The new wave of technology will also give rise to new security challenges, particularly the data confidentiality in cloud-based sharing applications. Searchable encryption is considered as one of the most promising solutions for balancing data confidentiality and usability. However, most existing searchable encryption schemes cannot simultaneously satisfy requirements for both high search efficiency and strong security due to lack of some must-have properties, such as parallel search and forward security. To address this problem, we propose a variant searchable encryption with parallelism and forward privacy, namely the parallel and forward private searchable public-key encryption (PFP-SPE). PFP-SPE scheme achieves both the parallelism and forward privacy at the expense of slightly higher storage costs. PFP-SPE has similar search efficiency with that of some searchable symmetric encryption schemes but no key distribution problem. The security analysis and the performance evaluation on a real-world dataset demonstrate that the proposed scheme is suitable for practical application.
Chen, B., Wu, L., Wang, H., Zhou, L., He, D..  2020.  A Blockchain-Based Searchable Public-Key Encryption With Forward and Backward Privacy for Cloud-Assisted Vehicular Social Networks. IEEE Transactions on Vehicular Technology. 69:5813–5825.
As the integration of the Internet of Vehicles and social networks, vehicular social networks (VSN) not only improves the efficiency and reliability of vehicular communication environment, but also provide more comprehensive social services for users. However, with the emergence of advanced communication and computing technologies, more and more data can be fast and conveniently collected from heterogeneous devices, and VSN has to meet new security challenges such as data security and privacy protection. Searchable encryption (SE) as a promising cryptographic primitive is devoted to data confidentiality without sacrificing data searchability. However, most existing schemes are vulnerable to the adaptive leakage-exploiting attacks or can not meet the efficiency requirements of practical applications, especially the searchable public-key encryption schemes (SPE). To achieve secure and efficient keyword search in VSN, we design a new blockchain-based searchable public-key encryption scheme with forward and backward privacy (BSPEFB). BSPEFB is a decentralized searchable public-key encryption scheme since the central search cloud server is replaced by the smart contract. Meanwhile, BSPEFB supports forward and backward privacy to achieve privacy protection. Finally, we implement a prototype of our basic construction and demonstrate the practicability of the proposed scheme in applications.
2020-11-04
Liang, Y., He, D., Chen, D..  2019.  Poisoning Attack on Load Forecasting. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :1230—1235.

Short-term load forecasting systems for power grids have demonstrated high accuracy and have been widely employed for commercial use. However, classic load forecasting systems, which are based on statistical methods, are subject to vulnerability from training data poisoning. In this paper, we demonstrate a data poisoning strategy that effectively corrupts the forecasting model even in the presence of outlier detection. To the best of our knowledge, poisoning attack on short-term load forecasting with outlier detection has not been studied in previous works. Our method applies to several forecasting models, including the most widely-adapted and best-performing ones, such as multiple linear regression (MLR) and neural network (NN) models. Starting with the MLR model, we develop a novel closed-form solution to quickly estimate the new MLR model after a round of data poisoning without retraining. We then employ line search and simulated annealing to find the poisoning attack solution. Furthermore, we use the MLR attacking solution to generate a numerical solution for other models, such as NN. The effectiveness of our algorithm has been tested on the Global Energy Forecasting Competition (GEFCom2012) data set with the presence of outlier detection.