Biblio

Filters: Author is Chen, B.  [Clear All Filters]
2021-04-27
Chen, B., Wu, L., Li, L., Choo, K. R., He, D..  2020.  A Parallel and Forward Private Searchable Public-Key Encryption for Cloud-Based Data Sharing. IEEE Access. 8:28009–28020.
Data sharing through the cloud is flourishing with the development of cloud computing technology. The new wave of technology will also give rise to new security challenges, particularly the data confidentiality in cloud-based sharing applications. Searchable encryption is considered as one of the most promising solutions for balancing data confidentiality and usability. However, most existing searchable encryption schemes cannot simultaneously satisfy requirements for both high search efficiency and strong security due to lack of some must-have properties, such as parallel search and forward security. To address this problem, we propose a variant searchable encryption with parallelism and forward privacy, namely the parallel and forward private searchable public-key encryption (PFP-SPE). PFP-SPE scheme achieves both the parallelism and forward privacy at the expense of slightly higher storage costs. PFP-SPE has similar search efficiency with that of some searchable symmetric encryption schemes but no key distribution problem. The security analysis and the performance evaluation on a real-world dataset demonstrate that the proposed scheme is suitable for practical application.
Chen, B., Wu, L., Wang, H., Zhou, L., He, D..  2020.  A Blockchain-Based Searchable Public-Key Encryption With Forward and Backward Privacy for Cloud-Assisted Vehicular Social Networks. IEEE Transactions on Vehicular Technology. 69:5813–5825.
As the integration of the Internet of Vehicles and social networks, vehicular social networks (VSN) not only improves the efficiency and reliability of vehicular communication environment, but also provide more comprehensive social services for users. However, with the emergence of advanced communication and computing technologies, more and more data can be fast and conveniently collected from heterogeneous devices, and VSN has to meet new security challenges such as data security and privacy protection. Searchable encryption (SE) as a promising cryptographic primitive is devoted to data confidentiality without sacrificing data searchability. However, most existing schemes are vulnerable to the adaptive leakage-exploiting attacks or can not meet the efficiency requirements of practical applications, especially the searchable public-key encryption schemes (SPE). To achieve secure and efficient keyword search in VSN, we design a new blockchain-based searchable public-key encryption scheme with forward and backward privacy (BSPEFB). BSPEFB is a decentralized searchable public-key encryption scheme since the central search cloud server is replaced by the smart contract. Meanwhile, BSPEFB supports forward and backward privacy to achieve privacy protection. Finally, we implement a prototype of our basic construction and demonstrate the practicability of the proposed scheme in applications.
2020-11-04
Zhang, J., Chen, J., Wu, D., Chen, B., Yu, S..  2019.  Poisoning Attack in Federated Learning using Generative Adversarial Nets. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :374—380.

Federated learning is a novel distributed learning framework, where the deep learning model is trained in a collaborative manner among thousands of participants. The shares between server and participants are only model parameters, which prevent the server from direct access to the private training data. However, we notice that the federated learning architecture is vulnerable to an active attack from insider participants, called poisoning attack, where the attacker can act as a benign participant in federated learning to upload the poisoned update to the server so that he can easily affect the performance of the global model. In this work, we study and evaluate a poisoning attack in federated learning system based on generative adversarial nets (GAN). That is, an attacker first acts as a benign participant and stealthily trains a GAN to mimic prototypical samples of the other participants' training set which does not belong to the attacker. Then these generated samples will be fully controlled by the attacker to generate the poisoning updates, and the global model will be compromised by the attacker with uploading the scaled poisoning updates to the server. In our evaluation, we show that the attacker in our construction can successfully generate samples of other benign participants using GAN and the global model performs more than 80% accuracy on both poisoning tasks and main tasks.

2019-01-31
Chang, B., Zhang, F., Chen, B., Li, Y., Zhu, W., Tian, Y., Wang, Z., Ching, A..  2018.  MobiCeal: Towards Secure and Practical Plausibly Deniable Encryption on Mobile Devices. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :454–465.

We introduce MobiCeal, the first practical Plausibly Deniable Encryption (PDE) system for mobile devices that can defend against strong coercive multi-snapshot adversaries, who may examine the storage medium of a user's mobile device at different points of time and force the user to decrypt data. MobiCeal relies on "dummy write" to obfuscate the differences between multiple snapshots of storage medium due to existence of hidden data. By incorporating PDE in block layer, MobiCeal supports a broad deployment of any block-based file systems on mobile devices. More importantly, MobiCeal is secure against side channel attacks which pose a serious threat to existing PDE schemes. A proof of concept implementation of MobiCeal is provided on an LG Nexus 4 Android phone using Android 4.2.2. It is shown that the performance of MobiCeal is significantly better than prior PDE systems against multi-snapshot adversaries.

2019-02-14
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.

2018-02-21
Zheng, P., Chen, B., Lu, X., Zhou, X..  2017.  Privacy-utility trade-off for smart meter data considering tracing household power usage. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :939–943.

As the key component of the smart grid, smart meters fill in the gap between electrical utilities and household users. Todays smart meters are capable of collecting household power information in real-time, providing precise power dispatching control services for electrical utilities and informing real-time power price for users, which significantly improve the user experiences. However, the use of data also brings a concern about privacy leakage and the trade-off between data usability and user privacy becomes an vital problem. Existing works propose privacy-utility trade-off frameworks against statistical inference attack. However, these algorithms are basing on distorted data, and will produce cumulative errors when tracing household power usage and lead to false power state estimation, mislead dispatching control, and become an obstacle for practical application. Furthermore, previous works consider power usage as discrete variables in their optimization problems while realistic smart meter data is continuous variable. In this paper, we propose a mechanism to estimate the trade-off between utility and privacy on a continuous time-series distorted dataset, where we extend previous optimization problems to continuous variables version. Experiments results on smart meter dataset reveal that the proposed mechanism is able to prevent inference to sensitive appliances, preserve insensitive appliances, as well as permit electrical utilities to trace household power usage periodically efficiently.

2018-03-05
Subedi, K. P., Budhathoki, D. R., Chen, B., Dasgupta, D..  2017.  RDS3: Ransomware Defense Strategy by Using Stealthily Spare Space. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–8.

Ransomware attacks are becoming prevalent nowadays with the flourishing of crypto-currencies. As the most harmful variant of ransomware crypto-ransomware encrypts the victim's valuable data, and asks for ransom money. Paying the ransom money, however, may not guarantee recovery of the data being encrypted. Most of the existing work for ransomware defense purely focuses on ransomware detection. A few of them consider data recovery from ransomware attacks, but they are not able to defend against ransomware which can obtain a high system privilege. In this work, we design RDS3, a novel Ransomware Defense Strategy, in which we Stealthily back up data in the Spare space of a computing device, such that the data encrypted by ransomware can be restored. Our key idea is that the spare space which stores the backup data is fully isolated from the ransomware. In this way, the ransomware is not able to ``touch'' the backup data regardless of what privilege it can obtain. Security analysis and experimental evaluation show that RDS3 can mitigate ransomware attacks with an acceptable overhead.

2018-06-11
Wu, D., Xu, Z., Chen, B., Zhang, Y..  2017.  Towards Access Control for Network Coding-Based Named Data Networking. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

Named Data Networking (NDN) is a content-oriented future Internet architecture, which well suits the increasingly mobile and information-intensive applications that dominate today's Internet. NDN relies on in-network caching to facilitate content delivery. This makes it challenging to enforce access control since the content has been cached in the routers and the content producer has lost the control over it. Due to its salient advantages in content delivery, network coding has been introduced into NDN to improve content delivery effectiveness. In this paper, we design ACNC, the first Access Control solution specifically for Network Coding-based NDN. By combining a novel linear AONT (All Or Nothing Transform) and encryption, we can ensure that only the legitimate user who possesses the authorization key can successfully recover the encoding matrix for network coding, and hence can recover the content being transmitted. In addition, our design has two salient merits: 1) the linear AONT well suits the linear nature of network coding; 2) only one vector of the encoding matrix needs to be encrypted/decrypted, which only incurs small computational overhead. Security analysis and experimental evaluation in ndnSIM show that our design can successfully enforce access control on network coding-based NDN with an acceptable overhead.