Biblio
Adversaries may cause significant damage to smart infrastructure using malicious attacks. To detect and mitigate these attacks before they can cause physical damage, operators can deploy anomaly detection systems (ADS), which can alarm operators to suspicious activities. However, detection thresholds of ADS need to be configured properly, as an oversensitive detector raises a prohibitively large number of false alarms, while an undersensitive detector may miss actual attacks. This is an especially challenging problem in dynamical environments, where the impact of attacks may significantly vary over time. Using a game-theoretic approach, we formulate the problem of computing optimal detection thresholds which minimize both the number of false alarms and the probability of missing actual attacks as a two-player Stackelberg security game. We provide an efficient dynamic programming-based algorithm for solving the game, thereby finding optimal detection thresholds. We analyze the performance of the proposed algorithm and show that its running time scales polynomially as the length of the time horizon of interest increases. In addition, we study the problem of finding optimal thresholds in the presence of both random faults and attacks. Finally, we evaluate our result using a case study of contamination attacks in water networks, and show that our optimal thresholds significantly outperform fixed thresholds that do not consider that the environment is dynamical.
Attacks in cyber-physical systems (CPS) which manipulate sensor readings can cause enormous physical damage if undetected. Detection of attacks on sensors is crucial to mitigate this issue. We study supervised regression as a means to detect anomalous sensor readings, where each sensor's measurement is predicted as a function of other sensors. We show that several common learning approaches in this context are still vulnerable to \emph{stealthy attacks}, which carefully modify readings of compromised sensors to cause desired damage while remaining undetected. Next, we model the interaction between the CPS defender and attacker as a Stackelberg game in which the defender chooses detection thresholds, while the attacker deploys a stealthy attack in response. We present a heuristic algorithm for finding an approximately optimal threshold for the defender in this game, and show that it increases system resilience to attacks without significantly increasing the false alarm rate.
Attacks in cyber-physical systems (CPS) which manipulate sensor readings can cause enormous physical damage if undetected. Detection of attacks on sensors is crucial to mitigate this issue. We study supervised regression as a means to detect anoma- lous sensor readings, where each sensor’s measure- ment is predicted as a function of other sensors. We show that several common learning approaches in this context are still vulnerable to stealthy at- tacks, which carefully modify readings of compro- mised sensors to cause desired damage while re- maining undetected. Next, we model the interac- tion between the CPS defender and attacker as a Stackelberg game in which the defender chooses detection thresholds, while the attacker deploys a stealthy attack in response. We present a heuris- tic algorithm for finding an approximately optimal threshold for the defender in this game, and show that it increases system resilience to attacks without significantly increasing the false alarm rate.
As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present two case studies in water distribution and transportation a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.
The exponential growth of information and communication technologies have caused a profound shift in the way humans engineer systems leading to the emergence of closed-loop systems involving strong integration and coordination of physical and cyber components, often referred to as cyber-physical systems (CPSs). Because of these disruptive changes, physical systems can now be attacked through cyberspace and cyberspace can be attacked through physical means. The paper considers security and resilience as system properties emerging from the intersection of system dynamics and the computing architecture. A modeling and simulation integration platform for experimentation and evaluation of resilient CPSs is presented using smart transportation systems as the application domain. Evaluation of resilience is based on attacker-defender games using simulations of sufficient fidelity. The platform integrates 1) realistic models of cyber and physical components and their interactions; 2) cyber attack models that focus on the impact of attacks to CPS behavior and operation; and 3) operational scenarios that can be used for evaluation of cybersecurity risks. Three case studies are presented to demonstrate the advantages of the platform: 1) vulnerability analysis of transportation networks to traffic signal tampering; 2) resilient sensor selection for forecasting traffic flow; and 3) resilient traffic signal control in the presence of denial-of-service attacks.
As the Industrial Internet of Things (IIot) becomes more prevalent in critical application domains, ensuring security and resilience in the face of cyber-attacks is becoming an issue of paramount importance. Cyber-attacks against critical infrastructures, for example, against smart water-distribution and transportation systems, pose serious threats to public health and safety. Owing to the severity of these threats, a variety of security techniques are available. However, no single technique can address the whole spectrum of cyber-attacks that may be launched by a determined and resourceful attacker. In light of this, we consider a multi-pronged approach for designing secure and resilient IIoT systems, which integrates redundancy, diversity, and hardening techniques. We introduce a framework for quantifying cyber-security risks and optimizing IIoT design by determining security investments in redundancy, diversity, and hardening. To demonstrate the applicability of our framework, we present a case study in water-distribution systems. Our numerical evaluation shows that integrating redundancy, diversity, and hardening can lead to reduced security risk at the same cost.
Assuring communication integrity is a central problem in security. However, overhead costs associated with cryptographic primitives used towards this end introduce significant practical implementation challenges for resource-bounded systems, such as cyberphysical systems. For example, many control systems are built on legacy components which are computationally limited but have strict timing constraints. If integrity protection is a binary decision, it may simply be infeasible to introduce into such systems; without it, however, an adversary can forge malicious messages, which can cause significant physical or financial harm. To bridge the gap between such binary decisions, we propose a stochastic message authentication approach that can explicitly trade computational cost off for security. We introduce a formal game-theoretic framework for optimal stochastic message authentication, providing provable guarantees for resource-bounded systems based on an existing message authentication scheme. We use our framework to investigate attacker deterrence, as well as optimal stochastic message authentication when deterrence is impossible, in both short-term and long-term equilibria. Additionally, we propose two schemes for implementing stochastic message authentication in practice, one for saving computation only at the receiver and one for saving computation at both ends, and demonstrate the associated computational savings using an actual implementation.
Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however, adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.
Complex traffic networks include a number of controlled intersections, and, commonly, multiple districts or municipalities. The result is that the overall traffic control problem is extremely complex computationally. Moreover, given that different municipalities may have distinct, non-aligned, interests, traffic light controller design is inherently decentralized, a consideration that is almost entirely absent from related literature. Both complexity and decentralization have great bearing both on the quality of the traffic network overall, as well as on its security. We consider both of these issues in a dynamic traffic network. First, we propose an effective local search algorithm to efficiently design system-wide control logic for a collection of intersections. Second, we propose a game theoretic (Stackelberg game) model of traffic network security in which an attacker can deploy denial-of-service attacks on sensors, and develop a resilient control algorithm to mitigate such threats. Finally, we propose a game theoretic model of decentralization, and investigate this model both in the context of baseline traffic network design, as well as resilient design accounting for attacks. Our methods are implemented and evaluated using a simple traffic network scenario in SUMO.
In recent years, we have seen a number of successful attacks against high-profile targets, some of which have even caused severe physical damage. These examples have shown us that resourceful and determined attackers can penetrate virtually any system, even those that are secured by the "air-gap." Consequently, in order to minimize the impact of stealthy attacks, defenders have to focus not only on strengthening the first lines of defense but also on deploying effective intrusion-detection systems. Intrusion-detection systems can play a key role in protecting sensitive computer systems since they give defenders a chance to detect and mitigate attacks before they could cause substantial losses. However, an over-sensitive intrusion-detection system, which produces a large number of false alarms, imposes prohibitively high operational costs on a defender since alarms need to be manually investigated. Thus, defenders have to strike the right balance between maximizing security and minimizing costs. Optimizing the sensitivity of intrusion detection systems is especially challenging in the case when multiple interdependent computer systems have to be defended against a strategic attacker, who can target computer systems in order to maximize losses and minimize the probability of detection. We model this scenario as an attacker-defender security game and study the problem of finding optimal intrusion detection thresholds.
Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.
Traffic signals were originally standalone hardware devices running on fixed schedules, but by now, they have evolved into complex networked systems. As a consequence, traffic signals have become susceptible to attacks through wireless interfaces or even remote attacks through the Internet. Indeed, recent studies have shown that many traffic lights deployed in practice have easily exploitable vulnerabilities, which allow an attacker to tamper with the configuration of the signal. Due to hardware-based failsafes, these vulnerabilities cannot be used to cause accidents. However, they may be used to cause disastrous traffic congestions. Building on Daganzo's well-known traffic model, we introduce an approach for evaluating vulnerabilities of transportation networks, identifying traffic signals that have the greatest impact on congestion and which, therefore, make natural targets for attacks. While we prove that finding an attack that maximally impacts congestion is NP-hard, we also exhibit a polynomial-time heuristic algorithm for computing approximately optimal attacks. We then use numerical experiments to show that our algorithm is extremely efficient in practice. Finally, we also evaluate our approach using the SUMO traffic simulator with a real-world transportation network, demonstrating vulnerabilities of this network. These simulation results extend the numerical experiments by showing that our algorithm is extremely efficient in a microsimulation model as well.
— Recent experimental studies have shown that traf- fic management systems are vulnerable to cyber-attacks on sensor data. This paper studies the vulnerability of fixedtime control of signalized intersections when sensors measuring traffic flow information are compromised and perturbed by an adversary. The problems are formulated by considering three malicious objectives: 1) worst-case network accumulation, which aims to destabilize the overall network as much as possible; 2) worst-case lane accumulation, which aims to cause worstcase accumulation on some target lanes; and 3) risk-averse target accumulation, which aims to reach a target accumulation by making the minimum perturbation to sensor data. The problems are solved using bilevel programming optimization methods. Finally, a case study of a real network is used to illustrate the results.
Spear-phishing attacks pose a serious threat to sensitive computer systems, since they sidestep technical security mechanisms by exploiting the carelessness of authorized users. A common way to mitigate such attacks is to use e-mail filters which block e-mails with a maliciousness score above a chosen threshold. Optimal choice of such a threshold involves a tradeoff between the risk from delivered malicious emails and the cost of blocking benign traffic. A further complicating factor is the strategic nature of an attacker, who may selectively target users offering the best value in terms of likelihood of success and resulting access privileges. Previous work on strategic threshold-selection considered a single organization choosing thresholds for all users. In reality, many organizations are potential targets of such attacks, and their incentives need not be well aligned. We therefore consider the problem of strategic threshold-selection by a collection of independent self-interested users. We characterize both Stackelberg multi-defender equilibria, corresponding to short-term strategic dynamics, as well as Nash equilibria of the simultaneous game between all users and the attacker, modeling long-term dynamics, and exhibit a polynomial-time algorithm for computing short-term (Stackelberg) equilibria. We find that while Stackelberg multi-defender equilibrium need not exist, Nash equilibrium always exists, and remarkably, both equilibria are unique and socially optimal.