Biblio
Despite the additional protection it affords, two-factor authentication (2FA) adoption reportedly remains low. To better understand 2FA adoption and its barriers, we observed the deployment of a 2FA system at Carnegie Mellon University (CMU). We explore user behaviors and opinions around adoption, surrounding a mandatory adoption deadline. Our results show that (a) 2FA adopters found it annoying, but fairly easy to use, and believed it made their accounts more secure; (b) experience with CMU Duo often led to positive perceptions, sometimes translating into 2FA adoption for other accounts; and, (c) the differences between users required to adopt 2FA and those who adopted voluntarily are smaller than expected. We also explore the relationship between different usage patterns and perceived usability, and identify user misconceptions, insecure practices, and design issues. We conclude with recommendations for large-scale 2FA deployments to maximize adoption, focusing on implementation design, use of adoption mandates, and strategic messaging.
Understanding how to group a set of binary files into the piece of software they belong to is highly desirable for software profiling, malware detection, or enterprise audits, among many other applications. Unfortunately, it is also extremely challenging: there is absolutely no uniformity in the ways different applications rely on different files, in how binaries are signed, or in the versioning schemes used across different pieces of software. In this paper, we show that, by combining information gleaned from a large number of endpoints (millions of computers), we can accomplish large-scale application identification automatically and reliably. Our approach relies on collecting metadata on billions of files every day, summarizing it into much smaller "sketches", and performing approximate k-nearest neighbor clustering on non-metric space representations derived from these sketches. We design and implement our proposed system using Apache Spark, show that it can process billions of files in a matter of hours, and thus could be used for daily processing. We further show our system manages to successfully identify which files belong to which application with very high precision, and adequate recall.
We present an architecture for the Security Behavior Observatory (SBO), a client-server infrastructure designed to collect a wide array of data on user and computer behavior from hundreds of participants over several years. The SBO infrastructure had to be carefully designed to fulfill several requirements. First, the SBO must scale with the desired length, breadth, and depth of data collection. Second, we must take extraordinary care to ensure the security of the collected data, which will inevitably include intimate participant behavioral data. Third, the SBO must serve our research interests, which will inevitably change as collected data is analyzed and interpreted. This short paper summarizes some of our design and implementation benefits and discusses a few hurdles and trade-offs to consider when designing such a data collection system.
We present an architecture for the Security Behavior Observatory
(SBO), a client-server infrastructure designed to
collect a wide array of data on user and computer behavior
from hundreds of participants over several years. The SBO
infrastructure had to be carefully designed to fulfill several
requirements. First, the SBO must scale with the desired
length, breadth, and depth of data collection. Second, we
must take extraordinary care to ensure the security of the
collected data, which will inevitably include intimate participant
behavioral data. Third, the SBO must serve our
research interests, which will inevitably change as collected
data is analyzed and interpreted. This short paper summarizes
some of our design and implementation benefits and
discusses a few hurdles and trade-offs to consider when designing
such a data collection system.
Much of the data researchers usually collect about users’ privacy and security behavior comes from short-term studies and focuses on specific, narrow activities. We present a design architecture for the Security Behavior Observatory (SBO), a client-server infrastructure designed to collect a wide array of data on user and computer behavior from a panel of hundreds of participants over several years. The SBO infrastructure had to be carefully designed to fulfill several requirements. First, the SBO must scale with the desired length, breadth, and depth of data collection. Second, we must take extraordinary care to ensure the security and privacy of the collected data, which will inevitably include intimate details about our participants' behavior. Third, the SBO must serve our research interests, which will inevitably change over the course of the study, as collected data is analyzed, interpreted, and suggest further lines of inquiry. We describe in detail the SBO infrastructure, its secure data collection methods, the benefits of our design and implementation, as well as the hurdles and tradeoffs to consider when designing such a data collection system. - See more at: https://www.cylab.cmu.edu/research/techreports/2014/tr_cylab14009.html#sthash.vsO39UdR.dpuf
To help users create stronger text-based passwords, many web sites have deployed password meters that provide visual feedback on password strength. Although these meters are in wide use, their effects on the security and usability of passwords have not been well studied.
We present a 2,931-subject study of password creation in the presence of 14 password meters. We found that meters with a variety of visual appearances led users to create longer passwords. However, significant increases in resistance to a password-cracking algorithm were only achieved using meters that scored passwords stringently. These stringent meters also led participants to include more digits, symbols, and uppercase letters.
Password meters also affected the act of password creation. Participants who saw stringent meters spent longer creating their password and were more likely to change their password while entering it, yet they were also more likely to find the password meter annoying. However, the most stringent meter and those without visual bars caused participants to place less importance on satisfying the meter. Participants who saw more lenient meters tried to fill the meter and were averse to choosing passwords a meter deemed "bad" or "poor." Our findings can serve as guidelines for administrators seeking to nudge users towards stronger passwords.