Biblio

Filters: Author is Ur, Blase  [Clear All Filters]
2020-01-02
Ur, Blase.  2018.  SIGCHI Outstanding Dissertation Award – Supporting Password Decisions with Data. Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems. :Award1:1–Award1:3.
Abstract Despite decades of research into developing abstract security advice and improving interfaces, users still struggle to make passwords. Users frequently create passwords that are predictable for attackers [1, 9] or make other decisions (e.g., reusing the same password across accounts) that harm their security [2, 8]. In this thesis,1 I use data-driven methods to better understand how users choose passwords and how attackers guess passwords. I then combine these insights into a better password-strength meter that provides real-time, data-driven feedback about the user's password. I first quantify the impact on password security and usability of showing users different password-strength meters that score passwords using basic heuristics. I find in a 2,931- participant online study that meters that score passwords stringently and present their strength estimates visually lead users to create stronger passwords without significantly impacting password memorability [6]. Second, to better understand how attackers guess passwords, I perform comprehensive experiments on password-cracking approaches. I find that simply running these approaches in their default configuration is insufficient, but considering multiple well-configured approaches in parallel can serve as a proxy for guessing by an expert in password forensics [9]. The third and fourth sections of this thesis delve further into how users choose passwords. Through a series of analyses, I pinpoint ways in which users structure semantically significant content in their passwords [7]. I also examine the relationship between users' perceptions of password security and passwords' actual security, finding that while users often correctly judge the security impact of individual password characteristics, wide variance in their understanding of attackers may lead users to judge predictable passwords as sufficiently strong [5]. Finally, I integrate these insights into an open-source2 password-strength meter that gives users data-driven feedback about their specific password. This meter uses neural networks [3] and numerous carefully combined heuristics to score passwords and generate data-driven text feedback about a given password. I evaluate this meter through a ten-participant laboratory study and 4,509-participant online study [4]. Under the more common password-composition policy we tested, we find that the data-driven meter with detailed feedback leads users to create more secure, and no less memorable, passwords than a meter with only a bar as a strength indicator. In sum, the objective of this thesis is to demonstrate how integrating data-driven insights about how users create and how attackers guess passwords into a tool that presents real-time feedback can help users make better passwords.
2019-09-26
Khan, Mohammad Taha, Hyun, Maria, Kanich, Chris, Ur, Blase.  2018.  Forgotten But Not Gone: Identifying the Need for Longitudinal Data Management in Cloud Storage. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. :543:1-543:12.

Users have accumulated years of personal data in cloud storage, creating potential privacy and security risks. This agglomeration includes files retained or shared with others simply out of momentum, rather than intention. We presented 100 online-survey participants with a stratified sample of 10 files currently stored in their own Dropbox or Google Drive accounts. We asked about the origin of each file, whether the participant remembered that file was stored there, and, when applicable, about that file's sharing status. We also recorded participants' preferences moving forward for keeping, deleting, or encrypting those files, as well as adjusting sharing settings. Participants had forgotten that half of the files they saw were in the cloud. Overall, 83% of participants wanted to delete at least one file they saw, while 13% wanted to unshare at least one file. Our combined results suggest directions for retrospective cloud data management.

2018-05-09
Ur, Blase, Alfieri, Felicia, Aung, Maung, Bauer, Lujo, Christin, Nicolas, Colnago, Jessica, Cranor, Lorrie Faith, Dixon, Henry, Emami Naeini, Pardis, Habib, Hana et al..  2017.  Design and Evaluation of a Data-Driven Password Meter. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. :3775–3786.
Despite their ubiquity, many password meters provide inaccurate strength estimates. Furthermore, they do not explain to users what is wrong with their password or how to improve it. We describe the development and evaluation of a data-driven password meter that provides accurate strength measurement and actionable, detailed feedback to users. This meter combines neural networks and numerous carefully combined heuristics to score passwords and generate data-driven text feedback about the user's password. We describe the meter's iterative development and final design. We detail the security and usability impact of the meter's design dimensions, examined through a 4,509-participant online study. Under the more common password-composition policy we tested, we found that the data-driven meter with detailed feedback led users to create more secure, and no less memorable, passwords than a meter with only a bar as a strength indicator.
2014-09-17
Mazurek, Michelle L., Komanduri, Saranga, Vidas, Timothy, Bauer, Lujo, Christin, Nicolas, Cranor, Lorrie Faith, Kelley, Patrick Gage, Shay, Richard, Ur, Blase.  2013.  Measuring Password Guessability for an Entire University. Proceedings of the 2013 ACM SIGSAC Conference on Computer &\#38; Communications Security. :173–186.
Despite considerable research on passwords, empirical studies of password strength have been limited by lack of access to plaintext passwords, small data sets, and password sets specifically collected for a research study or from low-value accounts. Properties of passwords used for high-value accounts thus remain poorly understood. We fill this gap by studying the single-sign-on passwords used by over 25,000 faculty, staff, and students at a research university with a complex password policy. Key aspects of our contributions rest on our (indirect) access to plaintext passwords. We describe our data collection methodology, particularly the many precautions we took to minimize risks to users. We then analyze how guessable the collected passwords would be during an offline attack by subjecting them to a state-of-the-art password cracking algorithm. We discover significant correlations between a number of demographic and behavioral factors and password strength. For example, we find that users associated with the computer science school make passwords more than 1.5 times as strong as those of users associated with the business school. while users associated with computer science make strong ones. In addition, we find that stronger passwords are correlated with a higher rate of errors entering them. We also compare the guessability and other characteristics of the passwords we analyzed to sets previously collected in controlled experiments or leaked from low-value accounts. We find more consistent similarities between the university passwords and passwords collected for research studies under similar composition policies than we do between the university passwords and subsets of passwords leaked from low-value accounts that happen to comply with the same policies.
2015-01-12
Ur, Blase, Kelly, Patrick Gage, Komanduri, Saranga, Lee, Joel, Maass, Michael, Mazurek, Michelle, Passaro, Timothy, Shay, Richard, Vidas, Timothy, Bauer, Lujo et al..  2012.  How Does Your Password Measure Up? The Effect of Strength Meters on Password Creation Security'12 Proceedings of the 21st USENIX conference on Security symposium.

To help users create stronger text-based passwords, many web sites have deployed password meters that provide visual feedback on password strength. Although these meters are in wide use, their effects on the security and usability of passwords have not been well studied.

We present a 2,931-subject study of password creation in the presence of 14 password meters. We found that meters with a variety of visual appearances led users to create longer passwords. However, significant increases in resistance to a password-cracking algorithm were only achieved using meters that scored passwords stringently. These stringent meters also led participants to include more digits, symbols, and uppercase letters.

Password meters also affected the act of password creation. Participants who saw stringent meters spent longer creating their password and were more likely to change their password while entering it, yet they were also more likely to find the password meter annoying. However, the most stringent meter and those without visual bars caused participants to place less importance on satisfying the meter. Participants who saw more lenient meters tried to fill the meter and were averse to choosing passwords a meter deemed "bad" or "poor." Our findings can serve as guidelines for administrators seeking to nudge users towards stronger passwords.