Biblio

Filters: Author is Wang, Wei  [Clear All Filters]
2018-05-27
Wang, Wei, Yu, Nanpeng.  2016.  LMP decomposition with three-phase DCOPF for distribution system. Innovative Smart Grid Technologies-Asia (ISGT-Asia), 2016 IEEE. :1–8.
2017-05-16
Wu, Hao, Mao, Jiangyun, Sun, Weiwei, Zheng, Baihua, Zhang, Hanyuan, Chen, Ziyang, Wang, Wei.  2016.  Probabilistic Robust Route Recovery with Spatio-Temporal Dynamics. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1915–1924.

Vehicle trajectories are one of the most important data in location-based services. The quality of trajectories directly affects the services. However, in the real applications, trajectory data are not always sampled densely. In this paper, we study the problem of recovering the entire route between two distant consecutive locations in a trajectory. Most existing works solve the problem without using those informative historical data or solve it in an empirical way. We claim that a data-driven and probabilistic approach is actually more suitable as long as data sparsity can be well handled. We propose a novel route recovery system in a fully probabilistic way which incorporates both temporal and spatial dynamics and addresses all the data sparsity problem introduced by the probabilistic method. It outperforms the existing works with a high accuracy (over 80%) and shows a strong robustness even when the length of routes to be recovered is very long (about 30 road segments) or the data is very sparse.

2017-08-22
Cheng, Wei, Zhang, Kai, Chen, Haifeng, Jiang, Guofei, Chen, Zhengzhang, Wang, Wei.  2016.  Ranking Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correlations. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :805–814.

Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-time monitoring and surveillance data from large-scale information systems and cyber-physical systems. Detecting system anomalies thus attracts significant amount of interest in many fields such as security, fault management, and industrial optimization. Recently, invariant network has shown to be a powerful way in characterizing complex system behaviours. In the invariant network, a node represents a system component and an edge indicates a stable, significant interaction between two components. Structures and evolutions of the invariance network, in particular the vanishing correlations, can shed important light on locating causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network often use the percentage of vanishing correlations to rank possible casual components, which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies may not always be the nodes with a high-percentage of vanishing correlations; 3) temporal patterns of vanishing correlations are not exploited for robust detection. To address these limitations, in this paper we propose a network diffusion based framework to identify significant causal anomalies and rank them. Our approach can effectively model fault propagation over the entire invariant network, and can perform joint inference on both the structural, and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are truly responsible for the vanishing correlations, and can compensate for unstructured measurement noise in the system. Extensive experiments on synthetic datasets, bank information system datasets, and coal plant cyber-physical system datasets demonstrate the effectiveness of our approach.

2017-09-05
Wang, Wei, Yang, Lin, Zhang, Qian.  2016.  Touch-and-guard: Secure Pairing Through Hand Resonance. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :670–681.

Securely pairing wearables with another device is the key to many promising applications, such as mobile payment, sensitive data transfer and secure interactions with smart home devices. This paper presents Touch-And-Guard (TAG), a system that uses hand touch as an intuitive manner to establish a secure connection between a wristband wearable and the touched device. It generates secret bits from hand resonant properties, which are obtained using accelerometers and vibration motors. The extracted secret bits are used by both sides to authenticate each other and then communicate confidentially. The ubiquity of accelerometers and motors presents an immediate market for our system. We demonstrate the feasibility of our system using an experimental prototype and conduct experiments involving 12 participants with 1440 trials. The results indicate that we can generate secret bits at a rate of 7.84 bit/s, which is 58% faster than conventional text input PIN authentication. We also show that our system is resistant to acoustic eavesdroppers in proximity.

2017-09-15
Cheng, Wei, Zhang, Kai, Chen, Haifeng, Jiang, Guofei, Chen, Zhengzhang, Wang, Wei.  2016.  Ranking Causal Anomalies via Temporal and Dynamical Analysis on Vanishing Correlations. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :805–814.

Modern world has witnessed a dramatic increase in our ability to collect, transmit and distribute real-time monitoring and surveillance data from large-scale information systems and cyber-physical systems. Detecting system anomalies thus attracts significant amount of interest in many fields such as security, fault management, and industrial optimization. Recently, invariant network has shown to be a powerful way in characterizing complex system behaviours. In the invariant network, a node represents a system component and an edge indicates a stable, significant interaction between two components. Structures and evolutions of the invariance network, in particular the vanishing correlations, can shed important light on locating causal anomalies and performing diagnosis. However, existing approaches to detect causal anomalies with the invariant network often use the percentage of vanishing correlations to rank possible casual components, which have several limitations: 1) fault propagation in the network is ignored; 2) the root casual anomalies may not always be the nodes with a high-percentage of vanishing correlations; 3) temporal patterns of vanishing correlations are not exploited for robust detection. To address these limitations, in this paper we propose a network diffusion based framework to identify significant causal anomalies and rank them. Our approach can effectively model fault propagation over the entire invariant network, and can perform joint inference on both the structural, and the time-evolving broken invariance patterns. As a result, it can locate high-confidence anomalies that are truly responsible for the vanishing correlations, and can compensate for unstructured measurement noise in the system. Extensive experiments on synthetic datasets, bank information system datasets, and coal plant cyber-physical system datasets demonstrate the effectiveness of our approach.

2017-07-24
Xu, Peng, Li, Jingnan, Wang, Wei, Jin, Hai.  2016.  Anonymous Identity-Based Broadcast Encryption with Constant Decryption Complexity and Strong Security. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :223–233.

Anonymous Identity-Based Broadcast Encryption (AIBBE) allows a sender to broadcast a ciphertext to multi-receivers, and keeps receivers' anonymity. The existing AIBBE schemes fail to achieve efficient decryption or strong security, like the constant decryption complexity, the security under the adaptive attack, or the security in the standard model. Hence, we propose two new AIBBE schemes to overcome the drawbacks of previous schemes in the state-of-art. The biggest contribution in our work is the proposed AIBBE scheme with constant decryption complexity and the provable security under the adaptive attack in the standard model. This scheme should be the first one to obtain advantages in all above mentioned aspects, and has sufficient contribution in theory due to its strong security. We also propose another AIBBE scheme in the Random Oracle (RO) model, which is of sufficient interest in practice due to our experiment.