Biblio
Many self-adaptive systems benefit from human involvement and oversight, where a human operator can provide expertise not available to the system and detect problems that the system is unaware of. One way of achieving this synergy is by placing the human operator on the loop—i.e., providing supervisory oversight and intervening in the case of questionable adaptation decisions. To make such interaction effective, an explanation can play an important role in allowing the human operator to understand why the system is making certain decisions and improve the level of knowledge that the operator has about the system. This, in turn, may improve the operator’s capability to intervene and, if necessary, override the decisions being made by the system. However, explanations may incur costs, in terms of delay in actions and the possibility that a human may make a bad judgment. Hence, it is not always obvious whether an explanation will improve overall utility and, if so, then what kind of explanation should be provided to the operator. In this work, we define a formal framework for reasoning about explanations of adaptive system behaviors and the conditions under which they are warranted. Specifically, we characterize explanations in terms of explanation content, effect, and cost. We then present a dynamic system adaptation approach that leverages a probabilistic reasoning technique to determine when an explanation should be used to improve overall system utility. We evaluate our explanation framework in the context of a realistic industrial control system with adaptive behaviors.
Many self-adaptive systems benefit from human involvement and oversight, where a human operator can provide expertise not available to the system and can detect problems that the system is unaware of. One way of achieving this is by placing the human operator on the loop – i.e., providing supervisory oversight and intervening in the case of questionable adaptation decisions. To make such interaction effective, explanation is sometimes helpful to allow the human to understand why the system is making certain decisions and calibrate confidence from the human perspective. However, explanations come with costs in terms of delayed actions and the possibility that a human may make a bad judgement. Hence, it is not always obvious whether explanations will improve overall utility and, if so, what kinds of explanation to provide to the operator. In this work, we define a formal framework for reasoning about explanations of adaptive system behaviors and the conditions under which they are warranted. Specifically, we characterize explanations in terms of explanation content, effect, and cost. We then present a dynamic adaptation approach that leverages a probabilistic reasoning technique to determine when the explanation should be used in order to improve overall system utility.
An approach to analyzing the security of a cyber-physical system (CPS) is proposed, where the behavior of a physical plant and its controller are captured in approximate models, and their interaction is rigorously checked to discover potential attacks that involve a varying number of compromised sensors and actuators. As a preliminary study, this approach has been applied to a fully functional water treatment testbed constructed at the Singapore University of Technology and Design. The analysis revealed previously unknown attacks that were confirmed to pose serious threats to the safety of the testbed, and suggests a number of research challenges and opportunities for applying a similar type of formal analysis to cyber-physical security.
A distributed detection method is proposed to detect single stage multi-point (SSMP) attacks on a Cyber Physical System (CPS). Such attacks aim at compromising two or more sensors or actuators at any one stage of a CPS and could totally compromise a controller and prevent it from detecting the attack. However, as demonstrated in this work, using the flow properties of water from one stage to the other, a neighboring controller was found effective in detecting such attacks. The method is based on physical invariants derived for each stage of the CPS from its design. The attack detection effectiveness of the method was evaluated experimentally against an operational water treatment testbed containing 42 sensors and actuators. Results from the experiments point to high effectiveness of the method in detecting a variety of SSMP attacks but also point to its limitations. Distributing the attack detection code among various controllers adds to the scalability of the proposed method.