Biblio

Filters: Author is Adepu, Sridhar  [Clear All Filters]
2023-01-30
Adepu, Sridhar, Li, Nianyu, Kang, Eunsuk, Garlan, David.  2022.  Modeling and Analysis of Explanation for Secure Industrial Control Systems. ACM Transactions on Autonomous and Adaptive Systems. 17(3-4)

Many self-adaptive systems benefit from human involvement and oversight, where a human operator can provide expertise not available to the system and detect problems that the system is unaware of. One way of achieving this synergy is by placing the human operator on the loop—i.e., providing supervisory oversight and intervening in the case of questionable adaptation decisions. To make such interaction effective, an explanation can play an important role in allowing the human operator to understand why the system is making certain decisions and improve the level of knowledge that the operator has about the system. This, in turn, may improve the operator’s capability to intervene and, if necessary, override the decisions being made by the system. However, explanations may incur costs, in terms of delay in actions and the possibility that a human may make a bad judgment. Hence, it is not always obvious whether an explanation will improve overall utility and, if so, then what kind of explanation should be provided to the operator. In this work, we define a formal framework for reasoning about explanations of adaptive system behaviors and the conditions under which they are warranted. Specifically, we characterize explanations in terms of explanation content, effect, and cost. We then present a dynamic system adaptation approach that leverages a probabilistic reasoning technique to determine when an explanation should be used to improve overall system utility. We evaluate our explanation framework in the context of a realistic industrial control system with adaptive behaviors.

2020-07-08
Li, Nianyu, Adepu, Sridhar, Kang, Eunsuk, Garlan, David.  2020.  Explanations for Human-on-the-loop: A Probabilistic Model Checking Approach. In Proceedings of the 15th International Symposium on Software Engineering for Adaptive and Self-managing Systems (SEAMS) - Virtual.

Many self-adaptive systems benefit from human involvement and oversight, where a human operator can provide expertise not available to the system and can detect problems that the system is unaware of. One way of achieving this is by placing the human operator on the loop – i.e., providing supervisory oversight and intervening in the case of questionable adaptation decisions. To make such interaction effective, explanation is sometimes helpful to allow the human to understand why the system is making certain decisions and calibrate confidence from the human perspective. However, explanations come with costs in terms of delayed actions and the possibility that a human may make a bad judgement. Hence, it is not always obvious whether explanations will improve overall utility and, if so, what kinds of explanation to provide to the operator. In this work, we define a formal framework for reasoning about explanations of adaptive system behaviors and the conditions under which they are warranted. Specifically, we characterize explanations in terms of explanation content, effect, and cost. We then present a dynamic adaptation approach that leverages a probabilistic reasoning technique to determine when the explanation should be used in order to improve overall system utility.

2018-09-28
Umer, Muhammad Azmi, Mathur, Aditya, Junejo, Khurum Nazir, Adepu, Sridhar.  2017.  Integrating Design and Data Centric Approaches to Generate Invariants for Distributed Attack Detection. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :131–136.
Process anomaly is used for detecting cyber-physical attacks on critical infrastructure such as plants for water treatment and electric power generation. Identification of process anomaly is possible using rules that govern the physical and chemical behavior of the process within a plant. These rules, often referred to as invariants, can be derived either directly from plant design or from the data generated in an operational. However, for operational legacy plants, one might consider a data-centric approach for the derivation of invariants. The study reported here is a comparison of design-centric and data-centric approaches to derive process invariants. The study was conducted using the design of, and the data generated from, an operational water treatment plant. The outcome of the study supports the conjecture that neither approach is adequate in itself, and hence, the two ought to be integrated.
2017-05-17
Kang, Eunsuk, Adepu, Sridhar, Jackson, Daniel, Mathur, Aditya P..  2016.  Model-based Security Analysis of a Water Treatment System. Proceedings of the 2Nd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :22–28.

An approach to analyzing the security of a cyber-physical system (CPS) is proposed, where the behavior of a physical plant and its controller are captured in approximate models, and their interaction is rigorously checked to discover potential attacks that involve a varying number of compromised sensors and actuators. As a preliminary study, this approach has been applied to a fully functional water treatment testbed constructed at the Singapore University of Technology and Design. The analysis revealed previously unknown attacks that were confirmed to pose serious threats to the safety of the testbed, and suggests a number of research challenges and opportunities for applying a similar type of formal analysis to cyber-physical security.

Adepu, Sridhar, Mathur, Aditya.  2016.  Distributed Detection of Single-Stage Multipoint Cyber Attacks in a Water Treatment Plant. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :449–460.

A distributed detection method is proposed to detect single stage multi-point (SSMP) attacks on a Cyber Physical System (CPS). Such attacks aim at compromising two or more sensors or actuators at any one stage of a CPS and could totally compromise a controller and prevent it from detecting the attack. However, as demonstrated in this work, using the flow properties of water from one stage to the other, a neighboring controller was found effective in detecting such attacks. The method is based on physical invariants derived for each stage of the CPS from its design. The attack detection effectiveness of the method was evaluated experimentally against an operational water treatment testbed containing 42 sensors and actuators. Results from the experiments point to high effectiveness of the method in detecting a variety of SSMP attacks but also point to its limitations. Distributing the attack detection code among various controllers adds to the scalability of the proposed method.