Biblio

Filters: Author is Junejo, Khurum Nazir  [Clear All Filters]
2018-09-28
Umer, Muhammad Azmi, Mathur, Aditya, Junejo, Khurum Nazir, Adepu, Sridhar.  2017.  Integrating Design and Data Centric Approaches to Generate Invariants for Distributed Attack Detection. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :131–136.
Process anomaly is used for detecting cyber-physical attacks on critical infrastructure such as plants for water treatment and electric power generation. Identification of process anomaly is possible using rules that govern the physical and chemical behavior of the process within a plant. These rules, often referred to as invariants, can be derived either directly from plant design or from the data generated in an operational. However, for operational legacy plants, one might consider a data-centric approach for the derivation of invariants. The study reported here is a comparison of design-centric and data-centric approaches to derive process invariants. The study was conducted using the design of, and the data generated from, an operational water treatment plant. The outcome of the study supports the conjecture that neither approach is adequate in itself, and hence, the two ought to be integrated.
2017-08-22
Junejo, Khurum Nazir, Goh, Jonathan.  2016.  Behaviour-Based Attack Detection and Classification in Cyber Physical Systems Using Machine Learning. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :34–43.

Cyber-physical systems (CPS) are often network integrated to enable remote management, monitoring, and reporting. Such integration has made them vulnerable to cyber attacks originating from an untrusted network (e.g., the internet). Once an attacker breaches the network security, he could corrupt operations of the system in question, which may in turn lead to catastrophes. Hence there is a critical need to detect intrusions into mission-critical CPS. Signature based detection may not work well for CPS, whose complexity may preclude any succinct signatures that we will need. Specification based detection requires accurate definitions of system behaviour that similarly can be hard to obtain, due to the CPS's complexity and dynamics, as well as inaccuracies and incompleteness of design documents or operation manuals. Formal models, to be tractable, are often oversimplified, in which case they will not support effective detection. In this paper, we study a behaviour-based machine learning (ML) approach for the intrusion detection. Whereas prior unsupervised ML methods have suffered from high missed detection or false-positive rates, we use a high-fidelity CPS testbed, which replicates all main physical and control components of a modern water treatment facility, to generate systematic training data for a supervised method. The method does not only detect the occurrence of a cyber attack at the physical process layer, but it also identifies the specific type of the attack. Its detection is fast and robust to noise. Furthermore, its adaptive system model can learn quickly to match dynamics of the CPS and its operating environment. It exhibits a low false positive (FP) rate, yet high precision and recall.