Biblio

Filters: Author is DaSilva, Luiz A.  [Clear All Filters]
2022-12-01
Barnard, Pieter, Macaluso, Irene, Marchetti, Nicola, DaSilva, Luiz A..  2022.  Resource Reservation in Sliced Networks: An Explainable Artificial Intelligence (XAI) Approach. ICC 2022 - IEEE International Conference on Communications. :1530—1535.
The growing complexity of wireless networks has sparked an upsurge in the use of artificial intelligence (AI) within the telecommunication industry in recent years. In network slicing, a key component of 5G that enables network operators to lease their resources to third-party tenants, AI models may be employed in complex tasks, such as short-term resource reservation (STRR). When AI is used to make complex resource management decisions with financial and service quality implications, it is important that these decisions be understood by a human-in-the-loop. In this paper, we apply state-of-the-art techniques from the field of Explainable AI (XAI) to the problem of STRR. Using real-world data to develop an AI model for STRR, we demonstrate how our XAI methodology can be used to explain the real-time decisions of the model, to reveal trends about the model’s general behaviour, as well as aid in the diagnosis of potential faults during the model’s development. In addition, we quantitatively validate the faithfulness of the explanations across an extensive range of XAI metrics to ensure they remain trustworthy and actionable.
2017-06-05
Shafigh, Alireza Shams, Lorenzo, Beatriz, Glisic, Savo, Pérez-Romero, Jordi, DaSilva, Luiz A., MacKenzie, Allen B., Röning, Juha.  2016.  A Framework for Dynamic Network Architecture and Topology Optimization. IEEE/ACM Trans. Netw.. 24:717–730.

A new paradigm in wireless network access is presented and analyzed. In this concept, certain classes of wireless terminals can be turned temporarily into an access point (AP) anytime while connected to the Internet. This creates a dynamic network architecture (DNA) since the number and location of these APs vary in time. In this paper, we present a framework to optimize different aspects of this architecture. First, the dynamic AP association problem is addressed with the aim to optimize the network by choosing the most convenient APs to provide the quality-of-service (QoS) levels demanded by the users with the minimum cost. Then, an economic model is developed to compensate the users for serving as APs and, thus, augmenting the network resources. The users' security investment is also taken into account in the AP selection. A preclustering process of the DNA is proposed to keep the optimization process feasible in a high dense network. To dynamically reconfigure the optimum topology and adjust it to the traffic variations, a new specific encoding of genetic algorithm (GA) is presented. Numerical results show that GA can provide the optimum topology up to two orders of magnitude faster than exhaustive search for network clusters, and the improvement significantly increases with the cluster size.