Biblio

Filters: Author is Röning, Juha  [Clear All Filters]
2021-08-17
Belman, Amith K., Paul, Tirthankar, Wang, Li, Iyengar, S. S., Śniatała, Paweł, Jin, Zhanpeng, Phoha, Vir V., Vainio, Seppo, Röning, Juha.  2020.  Authentication by Mapping Keystrokes to Music: The Melody of Typing. 2020 International Conference on Artificial Intelligence and Signal Processing (AISP). :1—6.
Expressing Keystroke Dynamics (KD) in form of sound opens new avenues to apply sound analysis techniques on KD. However this mapping is not straight-forward as varied feature space, differences in magnitudes of features and human interpretability of the music bring in complexities. We present a musical interface to KD by mapping keystroke features to music features. Music elements like melody, harmony, rhythm, pitch and tempo are varied with respect to the magnitude of their corresponding keystroke features. A pitch embedding technique makes the music discernible among users. Using the data from 30 users, who typed fixed strings multiple times on a desktop, shows that these auditory signals are distinguishable between users by both standard classifiers (SVM, Random Forests and Naive Bayes) and humans alike.
2017-06-05
Shafigh, Alireza Shams, Lorenzo, Beatriz, Glisic, Savo, Pérez-Romero, Jordi, DaSilva, Luiz A., MacKenzie, Allen B., Röning, Juha.  2016.  A Framework for Dynamic Network Architecture and Topology Optimization. IEEE/ACM Trans. Netw.. 24:717–730.

A new paradigm in wireless network access is presented and analyzed. In this concept, certain classes of wireless terminals can be turned temporarily into an access point (AP) anytime while connected to the Internet. This creates a dynamic network architecture (DNA) since the number and location of these APs vary in time. In this paper, we present a framework to optimize different aspects of this architecture. First, the dynamic AP association problem is addressed with the aim to optimize the network by choosing the most convenient APs to provide the quality-of-service (QoS) levels demanded by the users with the minimum cost. Then, an economic model is developed to compensate the users for serving as APs and, thus, augmenting the network resources. The users' security investment is also taken into account in the AP selection. A preclustering process of the DNA is proposed to keep the optimization process feasible in a high dense network. To dynamically reconfigure the optimum topology and adjust it to the traffic variations, a new specific encoding of genetic algorithm (GA) is presented. Numerical results show that GA can provide the optimum topology up to two orders of magnitude faster than exhaustive search for network clusters, and the improvement significantly increases with the cluster size.