Biblio

Filters: Author is Chen, Jie  [Clear All Filters]
2023-02-17
Zhou, Qian, Dai, Hua, Liu, Liang, Shi, Kai, Chen, Jie, Jiang, Hong.  2022.  The final security problem in IOT: Don’t count on the canary!. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :599–604.
Memory-based vulnerabilities are becoming more and more common in low-power and low-cost devices in IOT. We study several low-level vulnerabilities that lead to memory corruption in C and C++ programs, and how to use stack corruption and format string attack to exploit these vulnerabilities. Automatic methods for resisting memory attacks, such as stack canary and address space layout randomization ASLR, are studied. These methods do not need to change the source program. However, a return-oriented programming (ROP) technology can bypass them. Control flow integrity (CFI) can resist the destruction of ROP technology. In fact, the security design is holistic. Finally, we summarize the rules of security coding in embedded devices, and propose two novel methods of software anomaly detection process for IOT devices in the future.
2022-11-02
Zhao, Li, Jiao, Yan, Chen, Jie, Zhao, Ruixia.  2021.  Image Style Transfer Based on Generative Adversarial Network. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–195.
Image style transfer refers to the transformation of the style of image, so that the image details are retained to the maximum extent while the style is transferred. Aiming at the problem of low clarity of style transfer images generated by CycleGAN network, this paper improves the CycleGAN network. In this paper, the network model of auto-encoder and variational auto-encoder is added to the structure. The encoding part of the auto-encoder is used to extract image content features, and the variational auto-encoder is used to extract style features. At the same time, the generating network of the model in this paper uses first to adjust the image size and then perform the convolution operation to replace the traditional deconvolution operation. The discriminating network uses a multi-scale discriminator to force the samples generated by the generating network to be more realistic and approximate the target image, so as to improve the effect of image style transfer.
2020-10-19
Hong, Bo, Chen, Jie, Zhang, Kai, Qian, Haifeng.  2019.  Multi-Authority Non-Monotonic KP-ABE With Cryptographic Reverse Firewall. IEEE Access. 7:159002–159012.
The revelations of Snowden show that hardware and software of devices may corrupt users' machine to compromise the security in various ways. To address this concern, Mironov and Stephen-Davidowitz introduce the Cryptographic Reverse Firewall (CRF) concept that is able to resist the ex-filtration of secret information for some compromised machine (Eurocrypt 2015). There are some applications of CRF deployed in many cryptosystems, but less studied and deployed in Attribute-Based Encryption (ABE) field, which attracts a wide range of attention and is employed in real-world scenarios (i.e., data sharing in cloud). In this work, we focus how to give a CRF security protection for a multi-authority ABE scheme and hence propose a multi-authority key-policy ABE scheme with CRF (acronym, MA-KP-ABE-CRF), which supports attribute distribution and non-monotonic access structure. To achieve this, beginning with revisiting a MA-KP-ABE with non-trivial combining non-monotonic formula, we then give the randomness of ciphertexts and secret keys with reverse firewall and give formal security analysis. Finally, we give a simulation on our MA-KP-ABE-CRF system based on Charm library whose the experimental results demonstrate practical efficiency.
2020-08-10
Zeng, Ming, Zhang, Kai, Qian, Haifeng, Chen, Xiaofeng, Chen, Jie, Mu, Yi.  2019.  A Searchable Asymmetric Encryption Scheme with Support for Boolean Queries for Cloud Applications. The Computer Journal. 62:563–578.
Cloud computing is a new promising technology paradigm that can provide clients from the whole network with scalable storage resources and on-demand high-quality services. However, security concerns are raised when sensitive data are outsourced. Searchable encryption is a kind of cryptographic primitive that enables clients to selectively retrieve encrypted data, the existing schemes that support for sub-linear boolean queries are only considered in symmetric key setting, which makes a limitation for being widely deployed in many cloud applications. In order to address this issue, we propose a novel searchable asymmetric encryption scheme to support for sub-linear boolean query over encrypted data in a multi-client model that is extracted from an important observation that the outsourced database in cloud is continuously contributed and searched by multiple clients. For the purpose of introducing the scheme, we combine both the ideas of symmetric searchable encryption and public key searchable encryption and then design a novel secure inverted index. Furthermore, a detailed security analysis for our scheme is given under the simulation-based security definition. Finally, we conduct experiments for our construction on a real dataset (Enron) along with a performance analysis to show its practicality.
2017-08-18
Zhang, Kai, Gong, Junqing, Tang, Shaohua, Chen, Jie, Li, Xiangxue, Qian, Haifeng, Cao, Zhenfu.  2016.  Practical and Efficient Attribute-Based Encryption with Constant-Size Ciphertexts in Outsourced Verifiable Computation. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :269–279.

In cloud computing, computationally weak users are always willing to outsource costly computations to a cloud, and at the same time they need to check the correctness of the result provided by the cloud. Such activities motivate the occurrence of verifiable computation (VC). Recently, Parno, Raykova and Vaikuntanathan showed any VC protocol can be constructed from an attribute-based encryption (ABE) scheme for a same class of functions. In this paper, we propose two practical and efficient semi-adaptively secure key-policy attribute-based encryption (KP-ABE) schemes with constant-size ciphertexts. The semi-adaptive security requires that the adversary designates the challenge attribute set after it receives public parameters but before it issues any secret key query, which is stronger than selective security guarantee. Our first construction deals with small universe while the second one supports large universe. Both constructions employ the technique underlying the prime-order instantiation of nested dual system groups, which are based on the \$d\$-linear assumption including SXDH and DLIN assumptions. In order to evaluate the performance, we implement our ABE schemes using \$\textbackslashtextsf\Python\\$ language in Charm. Compared with previous KP-ABE schemes with constant-size ciphertexts, our constructions achieve shorter ciphertext and secret key sizes, and require low computation costs, especially under the SXDH assumption.

2017-10-10
Zhang, Kai, Gong, Junqing, Tang, Shaohua, Chen, Jie, Li, Xiangxue, Qian, Haifeng, Cao, Zhenfu.  2016.  Practical and Efficient Attribute-Based Encryption with Constant-Size Ciphertexts in Outsourced Verifiable Computation. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :269–279.

In cloud computing, computationally weak users are always willing to outsource costly computations to a cloud, and at the same time they need to check the correctness of the result provided by the cloud. Such activities motivate the occurrence of verifiable computation (VC). Recently, Parno, Raykova and Vaikuntanathan showed any VC protocol can be constructed from an attribute-based encryption (ABE) scheme for a same class of functions. In this paper, we propose two practical and efficient semi-adaptively secure key-policy attribute-based encryption (KP-ABE) schemes with constant-size ciphertexts. The semi-adaptive security requires that the adversary designates the challenge attribute set after it receives public parameters but before it issues any secret key query, which is stronger than selective security guarantee. Our first construction deals with small universe while the second one supports large universe. Both constructions employ the technique underlying the prime-order instantiation of nested dual system groups, which are based on the \$d\$-linear assumption including SXDH and DLIN assumptions. In order to evaluate the performance, we implement our ABE schemes using \$\textbackslashtextsf\Python\\$ language in Charm. Compared with previous KP-ABE schemes with constant-size ciphertexts, our constructions achieve shorter ciphertext and secret key sizes, and require low computation costs, especially under the SXDH assumption.