Biblio
In cloud computing, computationally weak users are always willing to outsource costly computations to a cloud, and at the same time they need to check the correctness of the result provided by the cloud. Such activities motivate the occurrence of verifiable computation (VC). Recently, Parno, Raykova and Vaikuntanathan showed any VC protocol can be constructed from an attribute-based encryption (ABE) scheme for a same class of functions. In this paper, we propose two practical and efficient semi-adaptively secure key-policy attribute-based encryption (KP-ABE) schemes with constant-size ciphertexts. The semi-adaptive security requires that the adversary designates the challenge attribute set after it receives public parameters but before it issues any secret key query, which is stronger than selective security guarantee. Our first construction deals with small universe while the second one supports large universe. Both constructions employ the technique underlying the prime-order instantiation of nested dual system groups, which are based on the \$d\$-linear assumption including SXDH and DLIN assumptions. In order to evaluate the performance, we implement our ABE schemes using \$\textbackslashtextsf\Python\\$ language in Charm. Compared with previous KP-ABE schemes with constant-size ciphertexts, our constructions achieve shorter ciphertext and secret key sizes, and require low computation costs, especially under the SXDH assumption.
In cloud computing, computationally weak users are always willing to outsource costly computations to a cloud, and at the same time they need to check the correctness of the result provided by the cloud. Such activities motivate the occurrence of verifiable computation (VC). Recently, Parno, Raykova and Vaikuntanathan showed any VC protocol can be constructed from an attribute-based encryption (ABE) scheme for a same class of functions. In this paper, we propose two practical and efficient semi-adaptively secure key-policy attribute-based encryption (KP-ABE) schemes with constant-size ciphertexts. The semi-adaptive security requires that the adversary designates the challenge attribute set after it receives public parameters but before it issues any secret key query, which is stronger than selective security guarantee. Our first construction deals with small universe while the second one supports large universe. Both constructions employ the technique underlying the prime-order instantiation of nested dual system groups, which are based on the \$d\$-linear assumption including SXDH and DLIN assumptions. In order to evaluate the performance, we implement our ABE schemes using \$\textbackslashtextsf\Python\\$ language in Charm. Compared with previous KP-ABE schemes with constant-size ciphertexts, our constructions achieve shorter ciphertext and secret key sizes, and require low computation costs, especially under the SXDH assumption.
Cloud computing emerges as a new computing paradigm that aims to provide reliable, customized and quality of service guaranteed computation environments for cloud users. Applications and databases are moved to the large centralized data centers, called cloud. Due to resource virtualization, global replication and migration, the physical absence of data and machine in the cloud, the stored data in the cloud and the computation results may not be well managed and fully trusted by the cloud users. Most of the previous work on the cloud security focuses on the storage security rather than taking the computation security into consideration together. In this paper, we propose a privacy cheating discouragement and secure computation auditing protocol, or SecCloud, which is a first protocol bridging secure storage and secure computation auditing in cloud and achieving privacy cheating discouragement by designated verifier signature, batch verification and probabilistic sampling techniques. The detailed analysis is given to obtain an optimal sampling size to minimize the cost. Another major contribution of this paper is that we build a practical secure-aware cloud computing experimental environment, or SecHDFS, as a test bed to implement SecCloud. Further experimental results have demonstrated the effectiveness and efficiency of the proposed SecCloud.