Biblio
Advancements in the AI field unfold tremendous opportunities for society. Simultaneously, it becomes increasingly important to address emerging ramifications. Thereby, the focus is often set on ethical and safe design forestalling unintentional failures. However, cybersecurity-oriented approaches to AI safety additionally consider instantiations of intentional malice – including unethical malevolent AI design. Recently, an analogous emphasis on malicious actors has been expressed regarding security and safety for virtual reality (VR). In this vein, while the intersection of AI and VR (AIVR) offers a wide array of beneficial cross-fertilization possibilities, it is responsible to anticipate future malicious AIVR design from the onset on given the potential socio-psycho-technological impacts. For a simplified illustration, this paper analyzes the conceivable use case of Generative AI (here deepfake techniques) utilized for disinformation in immersive journalism. In our view, defenses against such future AIVR safety risks related to falsehood in immersive settings should be transdisciplinarily conceived from an immersive co-creation stance. As a first step, we motivate a cybersecurity-oriented procedure to generate defenses via immersive design fictions. Overall, there may be no panacea but updatable transdisciplinary tools including AIVR itself could be used to incrementally defend against malicious actors in AIVR.
Cyber-physical systems (CPSs) are implemented in many industrial and embedded control applications. Where these systems are safety-critical, correct and safe behavior is of paramount importance. Malicious attacks on such CPSs can have far-reaching repercussions. For instance, if elements of a power grid behave erratically, physical damage and loss of life could occur. Currently, there is a trend toward increased complexity and connectivity of CPS. However, as this occurs, the potential attack vectors for these systems grow in number, increasing the risk that a given controller might become compromised. In this article, we examine how the dangers of compromised controllers can be mitigated. We propose a novel application of runtime enforcement that can secure the safety of real-world physical systems. Here, we synthesize enforcers to a new hardware architecture within programmable logic controller I/O modules to act as an effective line of defence between the cyber and the physical domains. Our enforcers prevent the physical damage that a compromised control system might be able to perform. To demonstrate the efficacy of our approach, we present several benchmarks, and show that the overhead for each system is extremely minimal.
Heterogeneous system-on-chip platforms with multiple processing cores are becoming increasingly common in safety-and security-critical embedded systems. To facilitate a logical isolation of physically connected on-chip components, internal communication links of such platforms are often equipped with dedicated access protection units. When performed manually, however, the configuration of these units can be both time-consuming and error-prone. To resolve this issue, we present a formal model and a corresponding design methodology that allows developers to specify access permissions and information flow requirements for embedded systems in a mostly platform-independent manner. As part of the methodology, the consistency between the permissions and the requirements is automatically verified and an extensible generation framework is used to transform the abstract permission declarations into configuration code for individual access protection units. We present a prototypical implementation of this approach and validate it by generating configuration code for the access protection unit of a commercially available multiprocessor system-on-chip.
This research provides security and safety extensions to a blockchain based solution whose target is e-health. The Advanced Blockchain platform is extended with intelligent monitoring for security and machine learning for detecting patient treatment medication safety issues. For the reasons of stringent HIPAA, HITECH, EU-GDPR and other regional regulations dictating security, safety and privacy requirements, the e-Health blockchains have to cover mandatory disclosure of violations or enforcements of policies during transaction flows involving healthcare. Our service solution further provides the benefits of resolving the abnormal flows of a medical treatment process, providing accountability of the service providers, enabling a trust health information environment for institutions to handle medication safely, giving patients a better safety guarantee, and enabling the authorities to supervise the security and safety of e-Health blockchains. The capabilities can be generalized to support a uniform smart solution across industry in a variety of blockchain applications.
Security has become the vital component of today's technology. People wish to safeguard their valuable items in bank lockers. With growing technology most of the banks have replaced the manual lockers by digital lockers. Even though there are numerous biometric approaches, these are not robust. In this work we propose a new approach for personal biometric identification based on features extracted from ECG.
Safety and security of complex critical infrastructures is very important for economic, environmental and social reasons. The interdisciplinary and inter-system dependencies within these infrastructures introduce difficulties in the safety and security design. Late discovery of safety and security design weaknesses can lead to increased costs, additional system complexity, ineffective mitigation measures and delays to the deployment of the systems. Traditionally, safety and security assessments are handled using different methods and tools, although some concepts are very similar, by specialized experts in different disciplines and are performed at different system design life-cycle phases.The methodology proposed in this paper supports a concurrent safety and security Defense in Depth (DiD) assessment at an early design phase and it is designed to handle safety and security at a high level and not focus on specific practical technologies. It is assumed that regardless of the perceived level of security defenses in place, a determined (motivated, capable and/or well-funded) attacker can find a way to penetrate a layer of defense. While traditional security research focuses on removing vulnerabilities and increasing the difficulty to exploit weaknesses, our higher-level approach focuses on how the attacker's reach can be limited and to increase the system's capability for detection, identification, mitigation and tracking. The proposed method can assess basic safety and security DiD design principles like Redundancy, Physical separation, Functional isolation, Facility functions, Diversity, Defense lines/Facility and Computer Security zones, Safety classes/Security Levels, Safety divisions and physical gates/conduits (as defined by the International Atomic Energy Agency (IAEA) and international standards) concurrently and provide early feedback to the system engineer. A prototype tool is developed that can parse the exported project file of the interdisciplinary model. Based on a set of safety and security attributes, the tool is able to assess aspects of the safety and security DiD capabilities of the design. Its results can be used to identify errors, improve the design and cut costs before a formal human expert inspection. The tool is demonstrated on a case study of an early conceptual design of a complex system of a nuclear power plant.
New technologies, such as augmented reality (AR) are used to enhance human capabilities and extend human functioning; nevertheless they may cause distraction and incorrect human functioning. Systems including socio entities (such as human) and technical entities (such as augmented reality) are called socio-technical systems. In order to do risk assessment in such systems, considering new dependability threats caused by augmented reality is essential, for example failure of an extended human function is a new type of dependability threat introduced to the system because of new technologies. In particular, it is required to identify these new dependability threats and extend modeling and analyzing techniques to be able to uncover their potential impacts. This research aims at providing a framework for risk assessment in AR-equipped socio-technical systems by identifying AR-extended human failures and AR-caused faults leading to human failures. Our work also extends modeling elements in an existing metamodel for modeling socio-technical systems, to enable AR-relevant dependability threats modeling. This extended metamodel is expected to be used for extending analysis techniques to analyze AR-equipped socio-technical systems.
Vehicular Adhoc Networks (VANETs) ensures road safety by communicating with a set of smart vehicles. VANET is a subset of Mobile Adhoc Networks (MANETs). VANET enabled vehicles helps in establishing communication services among one another or with the Road Side Unit (RSU). Information transmitted in VANET is distributed in an open access environment and hence security is one of the most critical issues related to VANET. Although each vehicle is not a source of all communications, most contact depends on the information that other vehicles receive from it. That vehicle must be able to assess, determine and respond locally on the information obtained from other vehicles to protect VANET from malicious act. Of this reason, message verification in VANET is more difficult due to the protection and privacy issues of the participating vehicles. To overcome security threats, we propose Monitoring Algorithm that detects malicious nodes based on the pre-selected threshold value. The threshold value is compared with the distrust value which is inherently tagged with each vehicle. The proposed Monitoring Algorithm not only detects malicious vehicles, but also isolates the malicious vehicles from the network. The proposed technique is simulated using Network Simulator2 (NS2) tool. The simulation result illustrated that the proposed Monitoring Algorithm outperforms the existing algorithms in terms of malicious node detection, network delay, packet delivery ratio and throughput, thereby uplifting the overall performance of the network.
Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.
The next generation of dependable embedded systems feature autonomy and higher levels of interconnection. Autonomy is commonly achieved with the support of artificial intelligence algorithms that pose high computing demands on the hardware platform, reaching a high performance scale. This involves a dramatic increase in software and hardware complexity, fact that together with the novelty of the technology, raises serious concerns regarding system dependability. Traditional approaches for certification require to demonstrate that the system will be acceptably safe to operate before it is deployed into service. The nature of autonomous systems, with potentially infinite scenarios, configurations and unanticipated interactions, makes it increasingly difficult to support such claim at design time. In this context, the extended networking technologies can be exploited to collect post-deployment evidence that serve to oversee whether safety assumptions are preserved during operation and to continuously improve the system through regular software updates. These software updates are not only convenient for critical bug fixing but also necessary for keeping the interconnected system resilient against security threats. However, such approach requires a recondition of the traditional certification practices.
Improved safety, high mobility and environmental concerns in transportation systems across the world and the corresponding developments in information and communication technologies continue to drive attention towards Intelligent Transportation Systems (ITS). This is evident in advanced driver-assistance systems such as lane departure warning, adaptive cruise control and collision avoidance. However, in connected and autonomous vehicles, the efficient functionality of these applications depends largely on the ability of a vehicle to accurately predict it operating parameters such as location and speed. The ability to predict the immediate future/next location (or speed) of a vehicle or its ability to predict neighbors help in guaranteeing integrity, availability and accountability, thus boosting safety and resiliency of the Vehicular Network for Mobile Cyber Physical Systems (VCPS). In this paper, we proposed a secure movement-prediction for connected vehicles by using Kalman filter. Specifically, Kalman filter predicts the locations and speeds of individual vehicles with reference to already observed and known information such posted legal speed limit, geographic/road location, direction etc. The aim is to achieve resilience through the predicted and exchanged information between connected moving vehicles in an adaptive manner. By being able to predict their future locations, the following vehicle is able to adjust its position more accurately to avoid collision and to ensure optimal information exchange among vehicles.