Biblio

Filters: Keyword is Algorithms  [Clear All Filters]
2023-08-11
Patgiri, Ripon.  2022.  OSHA: A General-purpose and Next Generation One-way Secure Hash Algorithm. 2022 IEEE/ACIS 22nd International Conference on Computer and Information Science (ICIS). :25—33.
Secure hash functions are widely used in cryptographic algorithms to secure against diverse attacks. A one-way secure hash function is used in the various research fields to secure, for instance, blockchain. Notably, most of the hash functions provide security based on static parameters and publicly known operations. Consequently, it becomes easier to attack by the attackers because all parameters and operations are predefined. The publicly known parameters and predefined operations make the oracle regenerate the key even though it is a one-way secure hash function. Moreover, the sensitive data is mixed with the predefined constant where an oracle may find a way to discover the key. To address the above issues, we propose a novel one-way secure hash algorithm, OSHA for short, to protect sensitive data against attackers. OSHA depends on a pseudo-random number generator to generate a hash value. Particularly, OSHA mixes multiple pseudo-random numbers to produce a secure hash value. Furthermore, OSHA uses dynamic parameters, which is difficult for adversaries to guess. Unlike conventional secure hash algorithms, OSHA does not depend on fixed constants. It replaces the fixed constant with the pseudo-random numbers. Also, the input message is not mixed with the pseudo-random numbers; hence, there is no way to recover and reverse the process for the adversaries.
2022-04-25
Nawaz, Alia, Naeem, Tariq, Tayyab, Muhammad.  2021.  Application Profiling From Encrypted Traffic. 2021 International Conference on Cyber Warfare and Security (ICCWS). :1–7.
Everyday millions of people use Internet for various purposes including information access, communication, business, education, entertainment and more. As a result, huge amount of information is exchanged between billions of connected devices. This information can be encapsulated in different types of data packets. This information is also referred to as network traffic. The traffic analysis is a challenging task when the traffic is encrypted and the contents are not readable. So complex algorithms required to deduce the information and form patterns for traffic analysis. Many of currently available techniques rely on application specific attribute analysis, deep packet inspection (DPI) or content-based analysis that become ineffective on encrypted traffic. The article will focused on analysis techniques for encrypted traffic that are adaptive to address the evolving nature and increasing volume of network traffic. The proposed solution solution is less dependent on application and protocol specific parameters so that it can adapt to new types of applications and protocols. Our results shows that processing required for traffic analysis need to be in acceptable limits to ensure applicability in real-time applications without compromising performance.
2021-10-26
[Anonymous].  2021.  AI Next Campaign.

AI technologies have demonstrated great value to missions as diverse as space-based imagery analysis, cyberattack warning, supply chain logistics and analysis of microbiologic systems. At the same time, the failure modes of AI technologies are poorly understood. DARPA is working to address this shortfall, with focused R&D, both analytic and empirical. DARPA’s success is essential for the Department to deploy AI technologies, particularly to the tactical edge, where reliable performance is required.

2021-09-21
Petrenko, Sergei A., Petrenko, Alexey S., Makoveichuk, Krystina A., Olifirov, Alexander V..  2020.  "Digital Bombs" Neutralization Method. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :446–451.
The article discusses new models and methods for timely identification and blocking of malicious code of critically important information infrastructure based on static and dynamic analysis of executable program codes. A two-stage method for detecting malicious code in the executable program codes (the so-called "digital bombs") is described. The first step of the method is to build the initial program model in the form of a control graph, the construction is carried out at the stage of static analysis of the program. The article discusses the purpose, features and construction criteria of an ordered control graph. The second step of the method is to embed control points in the program's executable code for organizing control of the possible behavior of the program using a specially designed recognition automaton - an automaton of dynamic control. Structural criteria for the completeness of the functional control of the subprogram are given. The practical implementation of the proposed models and methods was completed and presented in a special instrumental complex IRIDA.
2021-07-08
Flores, Hugo, Tran, Vincent, Tang, Bin.  2020.  PAM PAL: Policy-Aware Virtual Machine Migration and Placement in Dynamic Cloud Data Centers. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2549—2558.
We focus on policy-aware data centers (PADCs), wherein virtual machine (VM) traffic traverses a sequence of middleboxes (MBs) for security and performance purposes, and propose two new VM placement and migration problems. We first study PAL: policy-aware virtual machine placement. Given a PADC with a data center policy that communicating VM pairs must satisfy, the goal of PAL is to place the VMs into the PADC to minimize their total communication cost. Due to dynamic traffic loads in PADCs, however, above VM placement may no longer be optimal after some time. We thus study PAM: policy-aware virtual machine migration. Given an existing VM placement in the PADC and dynamic traffic rates among communicating VMs, PAM migrates VMs in order to minimize the total cost of migration and communication of the VM pairs. We design optimal, approximation, and heuristic policyaware VM placement and migration algorithms. Our experiments show that i) VM migration is an effective technique, reducing total communication cost of VM pairs by 25%, ii) our PAL algorithms outperform state-of-the-art VM placement algorithm that is oblivious to data center policies by 40-50%, and iii) our PAM algorithms outperform the only existing policy-aware VM migration scheme by 30%.
2021-05-03
Lehniger, Kai, Aftowicz, Marcin J., Langendorfer, Peter, Dyka, Zoya.  2020.  Challenges of Return-Oriented-Programming on the Xtensa Hardware Architecture. 2020 23rd Euromicro Conference on Digital System Design (DSD). :154–158.
This paper shows how the Xtensa architecture can be attacked with Return-Oriented-Programming (ROP). The presented techniques include possibilities for both supported Application Binary Interfaces (ABIs). Especially for the windowed ABI a powerful mechanism is presented that not only allows to jump to gadgets but also to manipulate registers without relying on specific gadgets. This paper purely focuses on how the properties of the architecture itself can be exploited to chain gadgets and not on specific attacks or a gadget catalog.
2020-04-13
Sanchez, Cristian, Martinez-Mosquera, Diana, Navarrete, Rosa.  2019.  Matlab Simulation of Algorithms for Face Detection in Video Surveillance. 2019 International Conference on Information Systems and Software Technologies (ICI2ST). :40–47.
Face detection is an application widely used in video surveillance systems and it is the first step for subsequent applications such as monitoring and recognition. For facial detection, there are a series of algorithms that allow the face to be extracted in a video image, among which are the Viola & Jones waterfall method and the method by geometric models using the Hausdorff distance. In this article, both algorithms are theoretically analyzed and the best one is determined by efficiency and resource optimization. Considering the most common problems in the detection of faces in a video surveillance system, such as the conditions of brightness and the angle of rotation of the face, tests have been carried out in 13 different scenarios with the best theoretically analyzed algorithm and its combination with another algorithm The images obtained, using a digital camera in the 13 scenarios, have been analyzed using Matlab code of the Viola & Jones and Viola & Jones algorithm combined with the Kanade-Lucas-Tomasi algorithm to add the feature of completing the tracking of a single object. This paper presents the detection percentages, false positives and false negatives for each image and for each simulation code, resulting in the scenarios with the most detection problems and the most accurate algorithm in face detection.
2020-10-26
Uchnár, Matúš, Feciľak, Peter.  2019.  Behavioral malware analysis algorithm comparison. 2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI). :397–400.
Malware analysis and detection based on it is very important factor in the computer security. Despite of the enormous effort of companies making anti-malware solutions, it is usually not possible to respond to new malware in time and some computers will get infected. This shortcoming could be partially mitigated through using behavioral malware analysis. This work is aimed towards machine learning algorithms comparison for the behavioral malware analysis purposes.
2019-09-04
Vanjari, M. S. P., Balsaraf, M. K. P..  2018.  Efficient Exploration of Algorithm in Scholarly Big Data Document. 2018 International Conference on Information , Communication, Engineering and Technology (ICICET). :1–5.
Algorithms are used to develop, analyzing, and applying in the computer field and used for developing new application. It is used for finding solutions to any problems in different condition. It transforms the problems into algorithmic ones on which standard algorithms are applied. Day by day Scholarly Digital documents are increasing. AlgorithmSeer is a search engine used for searching algorithms. The main aim of it provides a large algorithm database. It is used to automatically encountering and take these algorithms in this big collection of documents that enable algorithm indexing, searching, discovery, and analysis. An original set to identify and pull out algorithm representations in a big collection of scholarly documents is proposed, of scale able techniques used by AlgorithmSeer. Along with this, particularly important and relevant textual content can be accessed the platform and highlight portions by anyone with different levels of knowledge. In support of lectures and self-learning, the highlighted documents can be shared with others. But different levels of learners cannot use the highlighted part of text at same understanding level. The problem of guessing new highlights of partially highlighted documents can be solved by us.
2019-06-10
Mpanti, Anna, Nikolopoulos, Stavros D., Polenakis, Iosif.  2018.  A Graph-Based Model for Malicious Software Detection Exploiting Domination Relations Between System-Call Groups. Proceedings of the 19th International Conference on Computer Systems and Technologies. :20-26.

In this paper, we propose a graph-based algorithmic technique for malware detection, utilizing the System-call Dependency Graphs (ScDG) obtained through taint analysis traces. We leverage the grouping of system-calls into system-call groups with respect to their functionality to merge disjoint vertices of ScDG graphs, transforming them to Group Relation Graphs (GrG); note that, the GrG graphs represent malware's behavior being hence more resilient to probable mutations of its structure. More precisely, we extend the use of GrG graphs by mapping their vertices on the plane utilizing the degrees and the vertex-weights of a specific underlying graph of the GrG graph as to compute domination relations. Furthermore, we investigate how the activity of each system-call group could be utilized in order to distinguish graph-representations of malware and benign software. The domination relations among the vertices of GrG graphs result to a new graph representation that we call Coverage Graph of the GrG graph. Finally, we evaluate the potentials of our detection model using graph similarity between Coverage Graphs of known malicious and benign software samples of various types.

2019-02-18
Zhang, X., Xie, H., Lui, J. C. S..  2018.  Sybil Detection in Social-Activity Networks: Modeling, Algorithms and Evaluations. 2018 IEEE 26th International Conference on Network Protocols (ICNP). :44–54.

Detecting fake accounts (sybils) in online social networks (OSNs) is vital to protect OSN operators and their users from various malicious activities. Typical graph-based sybil detection (a mainstream methodology) assumes that sybils can make friends with only a limited (or small) number of honest users. However, recent evidences showed that this assumption does not hold in real-world OSNs, leading to low detection accuracy. To address this challenge, we explore users' activities to assist sybil detection. The intuition is that honest users are much more selective in choosing who to interact with than to befriend with. We first develop the social and activity network (SAN), a two-layer hyper-graph that unifies users' friendships and their activities, to fully utilize users' activities. We also propose a more practical sybil attack model, where sybils can launch both friendship attacks and activity attacks. We then design Sybil SAN to detect sybils via coupling three random walk-based algorithms on the SAN, and prove the convergence of Sybil SAN. We develop an efficient iterative algorithm to compute the detection metric for Sybil SAN, and derive the number of rounds needed to guarantee the convergence. We use "matrix perturbation theory" to bound the detection error when sybils launch many friendship attacks and activity attacks. Extensive experiments on both synthetic and real-world datasets show that Sybil SAN is highly robust against sybil attacks, and can detect sybils accurately under practical scenarios, where current state-of-art sybil defenses have low accuracy.

2019-02-25
Ali, S. S., Maqsood, J..  2018.  .Net library for SMS spam detection using machine learning: A cross platform solution. 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :470–476.

Short Message Service is now-days the most used way of communication in the electronic world. While many researches exist on the email spam detection, we haven't had the insight knowledge about the spam done within the SMS's. This might be because the frequency of spam in these short messages is quite low than the emails. This paper presents different ways of analyzing spam for SMS and a new pre-processing way to get the actual dataset of spam messages. This dataset was then used on different algorithm techniques to find the best working algorithm in terms of both accuracy and recall. Random Forest algorithm was then implemented in a real world application library written in C\# for cross platform .Net development. This library is capable of using a prebuild model for classifying a new dataset for spam and ham.

2018-03-26
Ma, H., Tao, O., Zhao, C., Li, P., Wang, L..  2017.  Impact of Replacement Policies on Static-Dynamic Query Results Cache in Web Search Engines. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :137–139.

Caching query results is an efficient technique for Web search engines. A state-of-the-art approach named Static-Dynamic Cache (SDC) is widely used in practice. Replacement policy is the key factor on the performance of cache system, and has been widely studied such as LIRS, ARC, CLOCK, SKLRU and RANDOM in different research areas. In this paper, we discussed replacement policies for static-dynamic cache and conducted the experiments on real large scale query logs from two famous commercial Web search engine companies. The experimental results show that ARC replacement policy could work well with static-dynamic cache, especially for large scale query results cache.

2017-10-18
Gingold, Mathew, Schiphorst, Thecla, Pasquier, Philippe.  2017.  Never Alone: A Video Agents Based Generative Audio-Visual Installation. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :1425–1430.

Never Alone (2016) is a generative large-scale urban screen video-sound installation, which presents the idea of generative choreographies amongst multiple video agents, or "digital performers". This generative installation questions how we navigate in urban spaces and the ubiquity and disruptive nature of encounters within the cities' landscapes. The video agents explore precarious movement paths along the façade inhabiting landscapes that are both architectural and emotional.

2017-08-02
Kaur, Jagjot, Lindskog, Dale.  2016.  An Algorithm to Facilitate Intrusion Response in Mobile Ad Hoc Networks. Proceedings of the 9th International Conference on Security of Information and Networks. :124–128.

In this research paper, we describe an algorithm that could be implemented on an intrusion response system (IRS) designed specifically for mobile ad hoc networks (MANET). Designed to supplement a MANET's hierarchical intrusion detection system (IDS), this IRS and its associated algorithm would be implemented on the root node operating in such an IRS, and would rely on the optimized link state routing protocol (OLSR) to determine facts about the topology of the network, and use that determination to facilitate responding to network intrusions and attacks. The algorithm operates in a query-response mode, where the IRS function of the IDS root node queries the implemented algorithm, and the algorithm returns its response, formatted as an unordered list of nodes satisfying the query.

2017-09-27
Kaur, Jagjot, Lindskog, Dale.  2016.  An Algorithm to Facilitate Intrusion Response in Mobile Ad Hoc Networks. Proceedings of the 9th International Conference on Security of Information and Networks. :124–128.

In this research paper, we describe an algorithm that could be implemented on an intrusion response system (IRS) designed specifically for mobile ad hoc networks (MANET). Designed to supplement a MANET's hierarchical intrusion detection system (IDS), this IRS and its associated algorithm would be implemented on the root node operating in such an IRS, and would rely on the optimized link state routing protocol (OLSR) to determine facts about the topology of the network, and use that determination to facilitate responding to network intrusions and attacks. The algorithm operates in a query-response mode, where the IRS function of the IDS root node queries the implemented algorithm, and the algorithm returns its response, formatted as an unordered list of nodes satisfying the query.

2017-09-15
Dhulipala, Laxman, Kabiljo, Igor, Karrer, Brian, Ottaviano, Giuseppe, Pupyrev, Sergey, Shalita, Alon.  2016.  Compressing Graphs and Indexes with Recursive Graph Bisection. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1535–1544.

Graph reordering is a powerful technique to increase the locality of the representations of graphs, which can be helpful in several applications. We study how the technique can be used to improve compression of graphs and inverted indexes. We extend the recent theoretical model of Chierichetti et al. (KDD 2009) for graph compression, and show how it can be employed for compression-friendly reordering of social networks and web graphs and for assigning document identifiers in inverted indexes. We design and implement a novel theoretically sound reordering algorithm that is based on recursive graph bisection. Our experiments show a significant improvement of the compression rate of graph and indexes over existing heuristics. The new method is relatively simple and allows efficient parallel and distributed implementations, which is demonstrated on graphs with billions of vertices and hundreds of billions of edges.

2017-05-30
Amir-Mohammadian, Sepehr, Skalka, Christian.  2016.  In-Depth Enforcement of Dynamic Integrity Taint Analysis. Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. :43–56.

Dynamic taint analysis can be used as a defense against low-integrity data in applications with untrusted user interfaces. An important example is defense against XSS and injection attacks in programs with web interfaces. Data sanitization is commonly used in this context, and can be treated as a precondition for endorsement in a dynamic integrity taint analysis. However, sanitization is often incomplete in practice. We develop a model of dynamic integrity taint analysis for Java that addresses imperfect sanitization with an in-depth approach. To avoid false positives, results of sanitization are endorsed for access control (aka prospective security), but are tracked and logged for auditing and accountability (aka retrospective security). We show how this heterogeneous prospective/retrospective mechanism can be specified as a uniform policy, separate from code. We then use this policy to establish correctness conditions for a program rewriting algorithm that instruments code for the analysis. The rewriting itself is a model of existing, efficient Java taint analysis tools.

2017-04-20
Mell, Peter, Shook, James M., Gavrila, Serban.  2016.  Restricting Insider Access Through Efficient Implementation of Multi-Policy Access Control Systems. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :13–22.

The American National Standards Institute (ANSI) has standardized an access control approach, Next Generation Access Control (NGAC), that enables simultaneous instantiation of multiple access control policies. For large complex enterprises this is critical to limiting the authorized access of insiders. However, the specifications describe the required access control capabilities but not the related algorithms. While appropriate, this leave open the important question as to whether or not NGAC is scalable. Existing cubic reference implementations indicate that it does not. For example, the primary NGAC reference implementation took several minutes to simply display the set of files accessible to a user on a moderately sized system. To solve this problem we provide an efficient access control decision algorithm, reducing the overall complexity from cubic to linear. Our other major contribution is to provide a novel mechanism for administrators and users to review allowed access rights. We provide an interface that appears to be a simple file directory hierarchy but in reality is an automatically generated structure abstracted from the underlying access control graph that works with any set of simultaneously instantiated access control policies. Our work thus provides the first efficient implementation of NGAC while enabling user privilege review through a novel visualization approach. These capabilities help limit insider access to information (and thereby limit information leakage) by enabling the efficient simultaneous instantiation of multiple access control policies.

2017-08-18
Fernández, Silvino, Valledor, Pablo, Diaz, Diego, Malatsetxebarria, Eneko, Iglesias, Miguel.  2016.  Criticality of Response Time in the Usage of Metaheuristics in Industry. Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. :937–940.

Metaheuristics include a wide range of optimization algorithms. Some of them are very well known and with proven value, as they solve successfully many examples of combinatorial NP-hard problems. Some examples of Metaheuristics are Genetic Algorithms (GA), Simulated Annealing (SA) or Ant Colony Optimization (ACO). Our company is devoted to making steel and is the biggest steelmaker in the world. Combining several industrial processes to produce 84.6 million tones (public official data of 2015) involves huge effort. Metaheuristics are applied to different scenarios inside our operations to optimize different areas: logistics, production scheduling or resource assignment, saving costs and helping to reach operational excellence, critical for our survival in a globalized world. Rather than obtaining the global optimal solution, the main interest of an industrial company is to have "good solutions", close to the optimal, but within a very short response time, and this latter requirement is the main difference with respect to the traditional research approach from the academic world. Production is continuous and it cannot be stopped or wait for calculations, in addition, reducing production speed implies decreasing productivity and making the facilities less competitive. Disruptions are common events, making rescheduling imperative while foremen wait for new instructions to operate. This position paper explains the problem of the time response in our industrial environment, the solutions we have investigated and some results already achieved.

2018-07-06
Mozaffari-Kermani, M., Sur-Kolay, S., Raghunathan, A., Jha, N. K..  2015.  Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare. IEEE Journal of Biomedical and Health Informatics. 19:1893–1905.

Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness.

2017-03-08
Reis, R..  2015.  Trends on EDA for low power. 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). :1–4.

One of the main issues in the design of modern integrated circuits is power reduction. Mainly in digital circuits, the power consumption was defined by the dynamic power consumption, during decades. But in the new NanoCMOs technologies, the static power due to the leakage current is becoming the main issue in power consumption. As the leakage power is related to the amount of components, it is becoming mandatory to reduce the amount of transistors in any type of design, to reduce power consumption. So, it is important to obtain new EDA algorithms and tools to optimize the amount of components (transistors). It is also needed tools for the layout design automation that are able to design any network of components that is provided by an optimization tool that is able to reduce the size of the network of components. It is presented an example of a layout design automation tool that can do the layout of any network of transistors using transistors of any size. Another issue for power optimization is the use of tools and algorithms for gate sizing. The designer can manage the sizing of transistors to reduce power consumption, without compromising the clock frequency. There are two types of gate sizing, discrete gate sizing and continuous gate sizing. The discrete gate sizing tools are used when it is being used a cell library that has only few available sizes for each cell. The continuous gate sizing considers that the EDA tool can define any transistor sizing. In this case, the designer needs to have a layout design tool able to do the layout of transistors with any size. It will be presented the winner tools of the ISPD Contest 2012 and 2013. Also, it will be discussed the inclusion of our gate sizing algorithms in an industrial flow used to design state-of-the-art microprocessors. Another type of EDA tool that is becoming more and more useful is the visualization tools that provide an animated visual output of the running of EDA tools. This kind of tools is very usef- l to show to the tool developers how the tool is running. So, the EDA developers can use this information to improve the algorithms used in an EDA Tool.

2018-05-25
Hei, Xiali, Lin, Shan.  2014.  Multi-part File Encryption for Electronic Health Records Cloud. Proceedings of the 4th ACM MobiHoc Workshop on Pervasive Wireless Healthcare. :31–36.
2016-12-05
Eric Yuan, Naeem Esfahani, Sam Malek.  2014.  A Systematic Survey of Self-Protecting Software Systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS) - Special Section on Best Papers from SEAMS 2012 . 8(4)

Self-protecting software systems are a class of autonomic systems capable of detecting and mitigating security threats at runtime. They are growing in importance, as the stovepipe static methods of securing software systems have been shown to be inadequate for the challenges posed by modern software systems. Self-protection, like other self-* properties, allows the system to adapt to the changing environment through autonomic means without much human intervention, and can thereby be responsive, agile, and cost effective. While existing research has made significant progress towards autonomic and adaptive security, gaps and challenges remain. This article presents a significant extension of our preliminary study in this area. In particular, unlike our preliminary study, here we have followed a systematic literature review process, which has broadened the scope of our study and strengthened the validity of our conclusions. By proposing and applying a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area, we have identified key patterns, trends and challenges in the existing approaches, which reveals a number of opportunities that will shape the focus of future research efforts.

2018-05-27
M. A. Suresh, L. Smith, A. Rasekh, R. Stoleru, M. K. Banks, B. Shihada.  2014.  Mobile Sensor Networks for Leak and Backflow Detection in Water Distribution Systems. 2014 IEEE 28th International Conference on Advanced Information Networking and Applications. :673-680.