Biblio

Found 321 results

Filters: Keyword is anomaly detection  [Clear All Filters]
2017-12-12
Chow, J., Li, X., Mountrouidou, X..  2017.  Raising flags: Detecting covert storage channels using relative entropy. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :25–30.

This paper focuses on one type of Covert Storage Channel (CSC) that uses the 6-bit TCP flag header in TCP/IP network packets to transmit secret messages between accomplices. We use relative entropy to characterize the irregularity of network flows in comparison to normal traffic. A normal profile is created by the frequency distribution of TCP flags in regular traffic packets. In detection, the TCP flag frequency distribution of network traffic is computed for each unique IP pair. In order to evaluate the accuracy and efficiency of the proposed method, this study uses real regular traffic data sets as well as CSC messages using coding schemes under assumptions of both clear text, composed by a list of keywords common in Unix systems, and encrypted text. Moreover, smart accomplices may use only those TCP flags that are ever appearing in normal traffic. Then, in detection, the relative entropy can reveal the dissimilarity of a different frequency distribution from this normal profile. We have also used different data processing methods in detection: one method summarizes all the packets for a pair of IP addresses into one flow and the other uses a sliding moving window over such a flow to generate multiple frames of packets. The experimentation results, displayed by Receiver Operating Characteristic (ROC) curves, have shown that the method is promising to differentiate normal and CSC traffic packet streams. Furthermore the delay of raising an alert is analyzed for CSC messages to show its efficiency.

Legg, P. A., Buckley, O., Goldsmith, M., Creese, S..  2017.  Automated Insider Threat Detection System Using User and Role-Based Profile Assessment. IEEE Systems Journal. 11:503–512.

Organizations are experiencing an ever-growing concern of how to identify and defend against insider threats. Those who have authorized access to sensitive organizational data are placed in a position of power that could well be abused and could cause significant damage to an organization. This could range from financial theft and intellectual property theft to the destruction of property and business reputation. Traditional intrusion detection systems are neither designed nor capable of identifying those who act maliciously within an organization. In this paper, we describe an automated system that is capable of detecting insider threats within an organization. We define a tree-structure profiling approach that incorporates the details of activities conducted by each user and each job role and then use this to obtain a consistent representation of features that provide a rich description of the user's behavior. Deviation can be assessed based on the amount of variance that each user exhibits across multiple attributes, compared against their peers. We have performed experimentation using ten synthetic data-driven scenarios and found that the system can identify anomalous behavior that may be indicative of a potential threat. We also show how our detection system can be combined with visual analytics tools to support further investigation by an analyst.

2018-06-07
Aygun, R. C., Yavuz, A. G..  2017.  Network Anomaly Detection with Stochastically Improved Autoencoder Based Models. 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud). :193–198.

Intrusion detection systems do not perform well when it comes to detecting zero-day attacks, therefore improving their performance in that regard is an active research topic. In this study, to detect zero-day attacks with high accuracy, we proposed two deep learning based anomaly detection models using autoencoder and denoising autoencoder respectively. The key factor that directly affects the accuracy of the proposed models is the threshold value which was determined using a stochastic approach rather than the approaches available in the current literature. The proposed models were tested using the KDDTest+ dataset contained in NSL-KDD, and we achieved an accuracy of 88.28% and 88.65% respectively. The obtained results show that, as a singular model, our proposed anomaly detection models outperform any other singular anomaly detection methods and they perform almost the same as the newly suggested hybrid anomaly detection models.

2018-02-27
Lighari, S. N., Hussain, D. M. A..  2017.  Hybrid Model of Rule Based and Clustering Analysis for Big Data Security. 2017 First International Conference on Latest Trends in Electrical Engineering and Computing Technologies (IN℡LECT). :1–5.

The most of the organizations tend to accumulate the data related to security, which goes up-to terabytes in every month. They collect this data to meet the security requirements. The data is mostly in the shape of logs like Dns logs, Pcap files, and Firewall data etc. The data can be related to any communication network like cloud, telecom, or smart grid network. Generally, these logs are stored in databases or warehouses which becomes ultimately gigantic in size. Such a huge size of data upsurge the importance of security analytics in big data. In surveys, the security experts grumble about the existing tools and recommend for special tools and methods for big data security analysis. In this paper, we are using a big data analysis tool, which is known as apache spark. Although this tool is used for general purpose but we have used this for security analysis. It offers a very good library for machine learning algorithms including the clustering which is the main algorithm used in our work. In this work, we have developed a novel model, which combines rule based and clustering analysis for security analysis of big dataset. The dataset we are using in our experiment is the Kddcup99 which is a widely used dataset for intrusion detection. It is of MBs in size but can be used as a test case for big data security analysis.

2018-06-20
Petersen, E., To, M. A., Maag, S..  2017.  A novel online CEP learning engine for MANET IDS. 2017 IEEE 9th Latin-American Conference on Communications (LATINCOM). :1–6.

In recent years the use of wireless ad hoc networks has seen an increase of applications. A big part of the research has focused on Mobile Ad Hoc Networks (MAnETs), due to its implementations in vehicular networks, battlefield communications, among others. These peer-to-peer networks usually test novel communications protocols, but leave out the network security part. A wide range of attacks can happen as in wired networks, some of them being more damaging in MANETs. Because of the characteristics of these networks, conventional methods for detection of attack traffic are ineffective. Intrusion Detection Systems (IDSs) are constructed on various detection techniques, but one of the most important is anomaly detection. IDSs based only in past attacks signatures are less effective, even more if these IDSs are centralized. Our work focuses on adding a novel Machine Learning technique to the detection engine, which recognizes attack traffic in an online way (not to store and analyze after), re-writing IDS rules on the fly. Experiments were done using the Dockemu emulation tool with Linux Containers, IPv6 and OLSR as routing protocol, leading to promising results.

2018-04-04
Nawaratne, R., Bandaragoda, T., Adikari, A., Alahakoon, D., Silva, D. De, Yu, X..  2017.  Incremental knowledge acquisition and self-learning for autonomous video surveillance. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :4790–4795.

The world is witnessing a remarkable increase in the usage of video surveillance systems. Besides fulfilling an imperative security and safety purpose, it also contributes towards operations monitoring, hazard detection and facility management in industry/smart factory settings. Most existing surveillance techniques use hand-crafted features analyzed using standard machine learning pipelines for action recognition and event detection. A key shortcoming of such techniques is the inability to learn from unlabeled video streams. The entire video stream is unlabeled when the requirement is to detect irregular, unforeseen and abnormal behaviors, anomalies. Recent developments in intelligent high-level video analysis have been successful in identifying individual elements in a video frame. However, the detection of anomalies in an entire video feed requires incremental and unsupervised machine learning. This paper presents a novel approach that incorporates high-level video analysis outcomes with incremental knowledge acquisition and self-learning for autonomous video surveillance. The proposed approach is capable of detecting changes that occur over time and separating irregularities from re-occurrences, without the prerequisite of a labeled dataset. We demonstrate the proposed approach using a benchmark video dataset and the results confirm its validity and usability for autonomous video surveillance.

2018-05-24
Sallam, A., Bertino, E..  2017.  Detection of Temporal Insider Threats to Relational Databases. 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC). :406–415.

The mitigation of insider threats against databases is a challenging problem as insiders often have legitimate access privileges to sensitive data. Therefore, conventional security mechanisms, such as authentication and access control, may be insufficient for the protection of databases against insider threats and need to be complemented with techniques that support real-time detection of access anomalies. The existing real-time anomaly detection techniques consider anomalies in references to the database entities and the amounts of accessed data. However, they are unable to track the access frequencies. According to recent security reports, an increase in the access frequency by an insider is an indicator of a potential data misuse and may be the result of malicious intents for stealing or corrupting the data. In this paper, we propose techniques for tracking users' access frequencies and detecting anomalous related activities in real-time. We present detailed algorithms for constructing accurate profiles that describe the access patterns of the database users and for matching subsequent accesses by these users to the profiles. Our methods report and log mismatches as anomalies that may need further investigation. We evaluated our techniques on the OLTP-Benchmark. The results of the evaluation indicate that our techniques are very effective in the detection of anomalies.

2017-12-28
Henretty, T., Baskaran, M., Ezick, J., Bruns-Smith, D., Simon, T. A..  2017.  A quantitative and qualitative analysis of tensor decompositions on spatiotemporal data. 2017 IEEE High Performance Extreme Computing Conference (HPEC). :1–7.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar

2017-12-12
August, M. A., Diallo, M. H., Graves, C. T., Slayback, S. M., Glasser, D..  2017.  AnomalyDetect: Anomaly Detection for Preserving Availability of Virtualized Cloud Services. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :334–340.

In this paper, we present AnomalyDetect, an approach for detecting anomalies in cloud services. A cloud service consists of a set of interacting applications/processes running on one or more interconnected virtual machines. AnomalyDetect uses the Kalman Filter as the basis for predicting the states of virtual machines running cloud services. It uses the cloud service's virtual machine historical data to forecast potential anomalies. AnomalyDetect has been integrated with the AutoMigrate framework and serves as the means for detecting anomalies to automatically trigger live migration of cloud services to preserve their availability. AutoMigrate is a framework for developing intelligent systems that can monitor and migrate cloud services to maximize their availability in case of cloud disruption. We conducted a number of experiments to analyze the performance of the proposed AnomalyDetect approach. The experimental results highlight the feasibility of AnomalyDetect as an approach to autonomic cloud availability.

2017-10-27
Baluda, Mauro, Pistoia, Marco, Castro, Paul, Tripp, Omer.  2016.  A Framework for Automatic Anomaly Detection in Mobile Applications. Proceedings of the International Conference on Mobile Software Engineering and Systems. :297–298.
It is standard practice in enterprises to analyze large amounts of logs to detect software failures and malicious behaviors. Mobile applications pose a major challenge to centralized monitoring as network and storage limitations prevent fine-grained logs to be stored and transferred for off-line analysis. In this paper we introduce EMMA, a framework for automatic anomaly detection that enables security analysis as well as in-the-field quality assurance for enterprise mobile applications, and incurs minimal overhead for data exchange with a back-end monitoring platform. EMMA instruments binary applications with a lightweight anomaly-detection layer that reveals failures and security threats directly on mobile devices, thus enabling corrective measures to be taken promptly even when the device is disconnected. In our empirical evaluation, EMMA detected failures in unmodified Android mobile applications.
2017-06-05
Zhang, Hao, Yao, Danfeng(Daphne), Ramakrishnan, Naren.  2016.  Causality-based Sensemaking of Network Traffic for Android Application Security. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :47–58.

Malicious Android applications pose serious threats to mobile security. They threaten the data confidentiality and system integrity on Android devices. Monitoring runtime activities serves as an important technique for analyzing dynamic app behaviors. We design a triggering relation model for dynamically analyzing network traffic on Android devices. Our model enables one to infer the dependency of outbound network requests from the device. We describe a new machine learning approach for discovering the dependency of network requests. These request-level dependence relations are used to detect stealthy malware activities. Malicious requests are identified due to the lack of dependency with legitimate triggers. Our prototype is evaluated on 14GB network traffic data and system logs collected from an Android tablet. Experimental results show that our solution achieves a high accuracy (99.1%) in detecting malicious requests sent from new malicious apps.

2017-12-28
Mehetrey, P., Shahriari, B., Moh, M..  2016.  Collaborative Ensemble-Learning Based Intrusion Detection Systems for Clouds. 2016 International Conference on Collaboration Technologies and Systems (CTS). :404–411.

Cloud computation has become prominent with seemingly unlimited amount of storage and computation available to users. Yet, security is a major issue that hampers the growth of cloud. In this research we investigate a collaborative Intrusion Detection System (IDS) based on the ensemble learning method. It uses weak classifiers, and allows the use of untapped resources of cloud to detect various types of attacks on the cloud system. In the proposed system, tasks are distributed among available virtual machines (VM), individual results are then merged for the final adaptation of the learning model. Performance evaluation is carried out using decision trees and using fuzzy classifiers, on KDD99, one of the largest datasets for IDS. Segmentation of the dataset is done in order to mimic the behavior of real-time data traffic occurred in a real cloud environment. The experimental results show that the proposed approach reduces the execution time with improved accuracy, and is fault-tolerant when handling VM failures. The system is a proof-of-concept model for a scalable, cloud-based distributed system that is able to explore untapped resources, and may be used as a base model for a real-time hierarchical IDS.

2017-03-29
Kosek, A. M..  2016.  Contextual anomaly detection for cyber-physical security in Smart Grids based on an artificial neural network model. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.

This paper presents a contextual anomaly detection method and its use in the discovery of malicious voltage control actions in the low voltage distribution grid. The model-based anomaly detection uses an artificial neural network model to identify a distributed energy resource's behaviour under control. An intrusion detection system observes distributed energy resource's behaviour, control actions and the power system impact, and is tested together with an ongoing voltage control attack in a co-simulation set-up. The simulation results obtained with a real photovoltaic rooftop power plant data show that the contextual anomaly detection performs on average 55% better in the control detection and over 56% better in the malicious control detection over the point anomaly detection.

2017-09-05
Basan, Alexander, Basan, Elena, Makarevich, Oleg.  2016.  Development of the Hierarchal Trust Management System for Mobile Cluster-based Wireless Sensor Network. Proceedings of the 9th International Conference on Security of Information and Networks. :116–122.

In this paper a model of secure wireless sensor network (WSN) was developed. This model is able to defend against most of known network attacks and don't significantly reduce the energy power of sensor nodes (SN). We propose clustering as a way of network organization, which allows reducing energy consumption. Network protection is based on the trust level calculation and the establishment of trusted relationships between trusted nodes. The primary purpose of the hierarchical trust management system (HTMS) is to protect the WSN from malicious actions of an attacker. The developed system should combine the properties of energy efficiency and reliability. To achieve this goal the following tasks are performed: detection of illegal actions of an intruder; blocking of malicious nodes; avoiding of malicious attacks; determining the authenticity of nodes; the establishment of trusted connections between authentic nodes; detection of defective nodes and the blocking of their work. The HTMS operation based on the use of Bayes' theorem and calculation of direct and centralized trust values.

2017-07-24
Ghassemi, Mohsen, Sarwate, Anand D., Wright, Rebecca N..  2016.  Differentially Private Online Active Learning with Applications to Anomaly Detection. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :117–128.

In settings where data instances are generated sequentially or in streaming fashion, online learning algorithms can learn predictors using incremental training algorithms such as stochastic gradient descent. In some security applications such as training anomaly detectors, the data streams may consist of private information or transactions and the output of the learning algorithms may reveal information about the training data. Differential privacy is a framework for quantifying the privacy risk in such settings. This paper proposes two differentially private strategies to mitigate privacy risk when training a classifier for anomaly detection in an online setting. The first is to use a randomized active learning heuristic to screen out uninformative data points in the stream. The second is to use mini-batching to improve classifier performance. Experimental results show how these two strategies can trade off privacy, label complexity, and generalization performance.

2017-04-20
Wurzenberger, Markus, Skopik, Florian, Fiedler, Roman, Kastner, Wolfgang.  2016.  Discovering Insider Threats from Log Data with High-Performance Bioinformatics Tools. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :109–112.

Since the number of cyber attacks by insider threats and the damage caused by them has been increasing over the last years, organizations are in need for specific security solutions to counter these threats. To limit the damage caused by insider threats, the timely detection of erratic system behavior and malicious activities is of primary importance. We observed a major paradigm shift towards anomaly-focused detection mechanisms, which try to establish a baseline of system behavior – based on system logging data – and report any deviations from this baseline. While these approaches are promising, they usually have to cope with scalability issues. As the amount of log data generated during IT operations is exponentially growing, high-performance security solutions are required that can handle this huge amount of data in real time. In this paper, we demonstrate how high-performance bioinformatics tools can be leveraged to tackle this issue, and we demonstrate their application to log data for outlier detection, to timely detect anomalous system behavior that points to insider attacks.

2017-03-29
Harshaw, Christopher R., Bridges, Robert A., Iannacone, Michael D., Reed, Joel W., Goodall, John R..  2016.  GraphPrints: Towards a Graph Analytic Method for Network Anomaly Detection. Proceedings of the 11th Annual Cyber and Information Security Research Conference. :15:1–15:4.

This paper introduces a novel graph-analytic approach for detecting anomalies in network flow data called GraphPrints. Building on foundational network-mining techniques, our method represents time slices of traffic as a graph, then counts graphlets–-small induced subgraphs that describe local topology. By performing outlier detection on the sequence of graphlet counts, anomalous intervals of traffic are identified, and furthermore, individual IPs experiencing abnormal behavior are singled-out. Initial testing of GraphPrints is performed on real network data with an implanted anomaly. Evaluation shows false positive rates bounded by 2.84% at the time-interval level, and 0.05% at the IP-level with 100% true positive rates at both.

2018-07-06
Lampesberger, H..  2016.  An Incremental Learner for Language-Based Anomaly Detection in XML. 2016 IEEE Security and Privacy Workshops (SPW). :156–170.

The Extensible Markup Language (XML) is a complex language, and consequently, XML-based protocols are susceptible to entire classes of implicit and explicit security problems. Message formats in XML-based protocols are usually specified in XML Schema, and as a first-line defense, schema validation should reject malformed input. However, extension points in most protocol specifications break validation. Extension points are wildcards and considered best practice for loose composition, but they also enable an attacker to add unchecked content in a document, e.g., for a signature wrapping attack. This paper introduces datatyped XML visibly pushdown automata (dXVPAs) as language representation for mixed-content XML and presents an incremental learner that infers a dXVPA from example documents. The learner generalizes XML types and datatypes in terms of automaton states and transitions, and an inferred dXVPA converges to a good-enough approximation of the true language. The automaton is free from extension points and capable of stream validation, e.g., as an anomaly detector for XML-based protocols. For dealing with adversarial training data, two scenarios of poisoning are considered: a poisoning attack is either uncovered at a later time or remains hidden. Unlearning can therefore remove an identified poisoning attack from a dXVPA, and sanitization trims low-frequent states and transitions to get rid of hidden attacks. All algorithms have been evaluated in four scenarios, including a web service implemented in Apache Axis2 and Apache Rampart, where attacks have been simulated. In all scenarios, the learned automaton had zero false positives and outperformed traditional schema validation.

2017-08-22
Bohara, Atul, Thakore, Uttam, Sanders, William H..  2016.  Intrusion Detection in Enterprise Systems by Combining and Clustering Diverse Monitor Data. Proceedings of the Symposium and Bootcamp on the Science of Security. :7–16.

Intrusion detection using multiple security devices has received much attention recently. The large volume of information generated by these tools, however, increases the burden on both computing resources and security administrators. Moreover, attack detection does not improve as expected if these tools work without any coordination. In this work, we propose a simple method to join information generated by security monitors with diverse data formats. We present a novel intrusion detection technique that uses unsupervised clustering algorithms to identify malicious behavior within large volumes of diverse security monitor data. First, we extract a set of features from network-level and host-level security logs that aid in detecting malicious host behavior and flooding-based network attacks in an enterprise network system. We then apply clustering algorithms to the separate and joined logs and use statistical tools to identify anomalous usage behaviors captured by the logs. We evaluate our approach on an enterprise network data set, which contains network and host activity logs. Our approach correctly identifies and prioritizes anomalous behaviors in the logs by their likelihood of maliciousness. By combining network and host logs, we are able to detect malicious behavior that cannot be detected by either log alone.

2017-04-03
Yüksel, Ömer, den Hartog, Jerry, Etalle, Sandro.  2016.  Reading Between the Fields: Practical, Effective Intrusion Detection for Industrial Control Systems. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :2063–2070.

Detection of previously unknown attacks and malicious messages is a challenging problem faced by modern network intrusion detection systems. Anomaly-based solutions, despite being able to detect unknown attacks, have not been used often in practice due to their high false positive rate, and because they provide little actionable information to the security officer in case of an alert. In this paper we focus on intrusion detection in industrial control systems networks and we propose an innovative, practical and semantics-aware framework for anomaly detection. The network communication model and alerts generated by our framework are userunderstandable, making them much easier to manage. At the same time the framework exhibits an excellent tradeoff between detection rate and false positive rate, which we show by comparing it with two existing payload-based anomaly detection methods on several ICS datasets.

2017-07-24
Chakrabarti, Aniket, Marwah, Manish, Arlitt, Martin.  2016.  Robust Anomaly Detection for Large-Scale Sensor Data. Proceedings of the 3rd ACM International Conference on Systems for Energy-Efficient Built Environments. :31–40.

Large scale sensor networks are ubiquitous nowadays. An important objective of deploying sensors is to detect anomalies in the monitored system or infrastructure, which allows remedial measures to be taken to prevent failures, inefficiencies, and security breaches. Most existing sensor anomaly detection methods are local, i.e., they do not capture the global dependency structure of the sensors, nor do they perform well in the presence of missing or erroneous data. In this paper, we propose an anomaly detection technique for large scale sensor data that leverages relationships between sensors to improve robustness even when data is missing or erroneous. We develop a probabilistic graphical model-based global outlier detection technique that represents a sensor network as a pairwise Markov Random Field and uses graphical model inference to detect anomalies. We show our model is more robust than local models, and detects anomalies with 90% accuracy even when 50% of sensors are erroneous. We also build a synthetic graphical model generator that preserves statistical properties of a real data set to test our outlier detection technique at scale.

2017-11-20
Yang, Chaofei, Wu, Chunpeng, Li, Hai, Chen, Yiran, Barnell, Mark, Wu, Qing.  2016.  Security challenges in smart surveillance systems and the solutions based on emerging nano-devices. 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–6.

Modern smart surveillance systems can not only record the monitored environment but also identify the targeted objects and detect anomaly activities. These advanced functions are often facilitated by deep neural networks, achieving very high accuracy and large data processing throughput. However, inappropriate design of the neural network may expose such smart systems to the risks of leaking the target being searched or even the adopted learning model itself to attackers. In this talk, we will present the security challenges in the design of smart surveillance systems. We will also discuss some possible solutions that leverage the unique properties of emerging nano-devices, including the incurred design and performance cost and optimization methods for minimizing these overheads.

2017-06-05
Mirsky, Yisroel, Shabtai, Asaf, Rokach, Lior, Shapira, Bracha, Elovici, Yuval.  2016.  SherLock vs Moriarty: A Smartphone Dataset for Cybersecurity Research. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :1–12.

In this paper we describe and share with the research community, a significant smartphone dataset obtained from an ongoing long-term data collection experiment. The dataset currently contains 10 billion data records from 30 users collected over a period of 1.6 years and an additional 20 users for 6 months (totaling 50 active users currently participating in the experiment). The experiment involves two smartphone agents: SherLock and Moriarty. SherLock collects a wide variety of software and sensor data at a high sample rate. Moriarty perpetrates various attacks on the user and logs its activities, thus providing labels for the SherLock dataset. The primary purpose of the dataset is to help security professionals and academic researchers in developing innovative methods of implicitly detecting malicious behavior in smartphones. Specifically, from data obtainable without superuser (root) privileges. To demonstrate possible uses of the dataset, we perform a basic malware analysis and evaluate a method of continuous user authentication.

2017-04-24
He, Lu, Xu, Chen, Luo, Yan.  2016.  vTC: Machine Learning Based Traffic Classification As a Virtual Network Function. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :53–56.

Network flow classification is fundamental to network management and network security. However, it is challenging to classify network flows at very high line rates while simultaneously preserving user privacy. Machine learning based classification techniques utilize only meta-information of a flow and have been shown to be effective in identifying network flows. We analyze a group of widely used machine learning classifiers, and observe that the effectiveness of different classification models depends highly upon the protocol types as well as the flow features collected from network data.We propose vTC, a design of virtual network functions to flexibly select and apply the best suitable machine learning classifiers at run time. The experimental results show that the proposed NFV for flow classification can improve the accuracy of classification by up to 13%.

2016-04-25
Hemank Lamba, Thomas J. Glazier, Bradley Schmerl, Javier Camara, David Garlan, Jurgen Pfeffer.  2016.  A Model-based Approach to Anomaly Detection in Software Architectures. Symposium and Bootcamp on the Science of Security (HotSoS).

In an organization, the interactions users have with software leave patterns or traces of the parts of the systems accessed. These interactions can be associated with the underlying software architecture. The first step in detecting problems like insider threat is to detect those traces that are anomalous. Here, we propose a method to find anomalous users leveraging these interaction traces, categorized by user roles. We propose a model based approach to cluster user sequences and find outliers. We show that the approach works on a simulation of a large scale system based on and Amazon Web application style.