Biblio

Found 321 results

Filters: Keyword is anomaly detection  [Clear All Filters]
2021-03-04
Hashemi, M. J., Keller, E..  2020.  Enhancing Robustness Against Adversarial Examples in Network Intrusion Detection Systems. 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :37—43.

The increase of cyber attacks in both the numbers and varieties in recent years demands to build a more sophisticated network intrusion detection system (NIDS). These NIDS perform better when they can monitor all the traffic traversing through the network like when being deployed on a Software-Defined Network (SDN). Because of the inability to detect zero-day attacks, signature-based NIDS which were traditionally used for detecting malicious traffic are beginning to get replaced by anomaly-based NIDS built on neural networks. However, recently it has been shown that such NIDS have their own drawback namely being vulnerable to the adversarial example attack. Moreover, they were mostly evaluated on the old datasets which don't represent the variety of attacks network systems might face these days. In this paper, we present Reconstruction from Partial Observation (RePO) as a new mechanism to build an NIDS with the help of denoising autoencoders capable of detecting different types of network attacks in a low false alert setting with an enhanced robustness against adversarial example attack. Our evaluation conducted on a dataset with a variety of network attacks shows denoising autoencoders can improve detection of malicious traffic by up to 29% in a normal setting and by up to 45% in an adversarial setting compared to other recently proposed anomaly detectors.

2021-06-24
Wu, Chongke, Shao, Sicong, Tunc, Cihan, Hariri, Salim.  2020.  Video Anomaly Detection using Pre-Trained Deep Convolutional Neural Nets and Context Mining. 2020 IEEE/ACS 17th International Conference on Computer Systems and Applications (AICCSA). :1—8.
Anomaly detection is critically important for intelligent surveillance systems to detect in a timely manner any malicious activities. Many video anomaly detection approaches using deep learning methods focus on a single camera video stream with a fixed scenario. These deep learning methods use large-scale training data with large complexity. As a solution, in this paper, we show how to use pre-trained convolutional neural net models to perform feature extraction and context mining, and then use denoising autoencoder with relatively low model complexity to provide efficient and accurate surveillance anomaly detection, which can be useful for the resource-constrained devices such as edge devices of the Internet of Things (IoT). Our anomaly detection model makes decisions based on the high-level features derived from the selected embedded computer vision models such as object classification and object detection. Additionally, we derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method. We use two UCSD datasets to demonstrate that our approach with relatively low model complexity can achieve comparable performance compared to the state-of-the-art approaches.
2021-03-09
Hegde, M., Kepnang, G., Mazroei, M. Al, Chavis, J. S., Watkins, L..  2020.  Identification of Botnet Activity in IoT Network Traffic Using Machine Learning. 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :21—27.

Today our world benefits from Internet of Things (IoT) technology; however, new security problems arise when these IoT devices are introduced into our homes. Because many of these IoT devices have access to the Internet and they have little to no security, they make our smart homes highly vulnerable to compromise. Some of the threats include IoT botnets and generic confidentiality, integrity, and availability (CIA) attacks. Our research explores botnet detection by experimenting with supervised machine learning and deep-learning classifiers. Further, our approach assesses classifier performance on unbalanced datasets that contain benign data, mixed in with small amounts of malicious data. We demonstrate that the classifiers can separate malicious activity from benign activity within a small IoT network dataset. The classifiers can also separate malicious activity from benign activity in increasingly larger datasets. Our experiments have demonstrated incremental improvement in results for (1) accuracy, (2) probability of detection, and (3) probability of false alarm. The best performance results include 99.9% accuracy, 99.8% probability of detection, and 0% probability of false alarm. This paper also demonstrates how the performance of these classifiers increases, as IoT training datasets become larger and larger.

2021-03-29
Ateş, Ç, Özdel, S., Anarim, E..  2020.  DDoS Detection Algorithm Based on Fuzzy Logic. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1—4.

While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.

2021-08-17
Byrnes, Jeffrey, Hoang, Thomas, Mehta, Nihal Nitin, Cheng, Yuan.  2020.  A Modern Implementation of System Call Sequence Based Host-based Intrusion Detection Systems. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :218—225.
Much research is concentrated on improving models for host-based intrusion detection systems (HIDS). Typically, such research aims at improving a model's results (e.g., reducing the false positive rate) in the familiar static training/testing environment using the standard data sources. Matching advancements in the machine learning community, researchers in the syscall HIDS domain have developed many complex and powerful syscall-based models to serve as anomaly detectors. These models typically show an impressive level of accuracy while emphasizing on minimizing the false positive rate. However, with each proposed model iteration, we get further from the setting in which these models are intended to operate. As kernels become more ornate and hardened, the implementation space for anomaly detection models is narrowing. Furthermore, the rapid advancement of operating systems and the underlying complexity introduced dictate that the sometimes decades-old datasets have long been obsolete. In this paper, we attempt to bridge the gap between theoretical models and their intended application environments by examining the recent Linux kernel 5.7.0-rc1. In this setting, we examine the feasibility of syscall-based HIDS in modern operating systems and the constraints imposed on the HIDS developer. We discuss how recent advancements to the kernel have eliminated the previous syscall trace collect method of writing syscall table wrappers, and propose a new approach to generate data and place our detection model. Furthermore, we present the specific execution time and memory constraints that models must meet in order to be operable within their intended settings. Finally, we conclude with preliminary results from our model, which primarily show that in-kernel machine learning models are feasible, depending on their complexity.
2021-03-30
Kuchar, K., Fujdiak, R., Blazek, P., Martinasek, Z., Holasova, E..  2020.  Simplified Method for Fast and Efficient Incident Detection in Industrial Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1—3.

This article is focused on industrial networks and their security. An industrial network typically works with older devices that do not provide security at the level of today's requirements. Even protocols often do not support security at a sufficient level. It is necessary to deal with these security issues due to digitization. It is therefore required to provide other techniques that will help with security. For this reason, it is possible to deploy additional elements that will provide additional security and ensure the monitoring of the network, such as the Intrusion Detection System. These systems recognize identified signatures and anomalies. Methods of detecting security incidents by detecting anomalies in network traffic are described. The proposed methods are focused on detecting DoS attacks in the industrial Modbus protocol and operations performed outside the standard interval in the Distributed Network Protocol 3. The functionality of the performed methods is tested in the IDS system Zeek.

2021-06-30
Wang, Chenguang, Pan, Kaikai, Tindemans, Simon, Palensky, Peter.  2020.  Training Strategies for Autoencoder-based Detection of False Data Injection Attacks. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.
2021-03-09
Mashhadi, M. J., Hemmati, H..  2020.  Hybrid Deep Neural Networks to Infer State Models of Black-Box Systems. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :299–311.
Inferring behavior model of a running software system is quite useful for several automated software engineering tasks, such as program comprehension, anomaly detection, and testing. Most existing dynamic model inference techniques are white-box, i.e., they require source code to be instrumented to get run-time traces. However, in many systems, instrumenting the entire source code is not possible (e.g., when using black-box third-party libraries) or might be very costly. Unfortunately, most black-box techniques that detect states over time are either univariate, or make assumptions on the data distribution, or have limited power for learning over a long period of past behavior. To overcome the above issues, in this paper, we propose a hybrid deep neural network that accepts as input a set of time series, one per input/output signal of the system, and applies a set of convolutional and recurrent layers to learn the non-linear correlations between signals and the patterns, over time. We have applied our approach on a real UAV auto-pilot solution from our industry partner with half a million lines of C code. We ran 888 random recent system-level test cases and inferred states, over time. Our comparison with several traditional time series change point detection techniques showed that our approach improves their performance by up to 102%, in terms of finding state change points, measured by F1 score. We also showed that our state classification algorithm provides on average 90.45% F1 score, which improves traditional classification algorithms by up to 17%.
2021-03-29
Kummerow, A., Monsalve, C., Rösch, D., Schäfer, K., Nicolai, S..  2020.  Cyber-physical data stream assessment incorporating Digital Twins in future power systems. 2020 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.

2020-08-24
Renners, Leonard, Heine, Felix, Kleiner, Carsten, Rodosek, Gabi Dreo.  2019.  Adaptive and Intelligible Prioritization for Network Security Incidents. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
Incident prioritization is nowadays a part of many approaches and tools for network security and risk management. However, the dynamic nature of the problem domain is often unaccounted for. That is, the prioritization is typically based on a set of static calculations, which are rarely adjusted. As a result, incidents are incorrectly prioritized, leading to an increased and misplaced effort in the incident response. A higher degree of automation could help to address this problem. In this paper, we explicitly consider flaws in the prioritization an unalterable circumstance. We propose an adaptive incident prioritization, which allows to automate certain tasks for the prioritization model management in order to continuously assess and improve a prioritization model. At the same time, we acknowledge the human analyst as the focal point and propose to keep the human in the loop, among others by treating understandability as a crucial requirement.
2020-04-13
M.R., Anala, Makker, Malika, Ashok, Aakanksha.  2019.  Anomaly Detection in Surveillance Videos. 2019 26th International Conference on High Performance Computing, Data and Analytics Workshop (HiPCW). :93–98.
Every public or private area today is preferred to be under surveillance to ensure high levels of security. Since the surveillance happens round the clock, data gathered as a result is huge and requires a lot of manual work to go through every second of the recorded videos. This paper presents a system which can detect anomalous behaviors and alarm the user on the type of anomalous behavior. Since there are a myriad of anomalies, the classification of anomalies had to be narrowed down. There are certain anomalies which are generally seen and have a huge impact on public safety, such as explosions, road accidents, assault, shooting, etc. To narrow down the variations, this system can detect explosion, road accidents, shooting, and fighting and even output the frame of their occurrence. The model has been trained with videos belonging to these classes. The dataset used is UCF Crime dataset. Learning patterns from videos requires the learning of both spatial and temporal features. Convolutional Neural Networks (CNN) extract spatial features and Long Short-Term Memory (LSTM) networks learn the sequences. The classification, using an CNN-LSTM model achieves an accuracy of 85%.
2020-11-23
Ramapatruni, S., Narayanan, S. N., Mittal, S., Joshi, A., Joshi, K..  2019.  Anomaly Detection Models for Smart Home Security. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :19–24.
Recent years have seen significant growth in the adoption of smart homes devices. These devices provide convenience, security, and energy efficiency to users. For example, smart security cameras can detect unauthorized movements, and smoke sensors can detect potential fire accidents. However, many recent examples have shown that they open up a new cyber threat surface. There have been several recent examples of smart devices being hacked for privacy violations and also misused so as to perform DDoS attacks. In this paper, we explore the application of big data and machine learning to identify anomalous activities that can occur in a smart home environment. A Hidden Markov Model (HMM) is trained on network level sensor data, created from a test bed with multiple sensors and smart devices. The generated HMM model is shown to achieve an accuracy of 97% in identifying potential anomalies that indicate attacks. We present our approach to build this model and compare with other techniques available in the literature.
2020-07-20
Boumiza, Safa, Braham, Rafik.  2019.  An Anomaly Detector for CAN Bus Networks in Autonomous Cars based on Neural Networks. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–6.
The domain of securing in-vehicle networks has attracted both academic and industrial researchers due to high danger of attacks on drivers and passengers. While securing wired and wireless interfaces is important to defend against these threats, detecting attacks is still the critical phase to construct a robust secure system. There are only a few results on securing communication inside vehicles using anomaly-detection techniques despite their efficiencies in systems that need real-time detection. Therefore, we propose an intrusion detection system (IDS) based on Multi-Layer Perceptron (MLP) neural network for Controller Area Networks (CAN) bus. This IDS divides data according to the ID field of CAN packets using K-means clustering algorithm, then it extracts suitable features and uses them to train and construct the neural network. The proposed IDS works for each ID separately and finally it combines their individual decisions to construct the final score and generates alert in the presence of attack. The strength of our intrusion detection method is that it works simultaneously for two types of attacks which will eliminate the use of several separate IDS and thus reduce the complexity and cost of implementation.
Rumez, Marcel, Dürrwang, Jürgen, Brecht, Tim, Steinshorn, Timo, Neugebauer, Peter, Kriesten, Reiner, Sax, Eric.  2019.  CAN Radar: Sensing Physical Devices in CAN Networks based on Time Domain Reflectometry. 2019 IEEE Vehicular Networking Conference (VNC). :1–8.
The presence of security vulnerabilities in automotive networks has already been shown by various publications in recent years. Due to the specification of the Controller Area Network (CAN) as a broadcast medium without security mechanisms, attackers are able to read transmitted messages without being noticed and to inject malicious messages. In order to detect potential attackers within a network or software system as early as possible, Intrusion Detection Systems (IDSs) are prevalent. Many approaches for vehicles are based on techniques which are able to detect deviations from specified CAN network behaviour regarding protocol or payload properties. However, it is challenging to detect attackers who secretly connect to CAN networks and do not actively participate in bus traffic. In this paper, we present an approach that is capable of successfully detecting unknown CAN devices and determining the distance (cable length) between the attacker device and our sensing unit based on Time Domain Reflectometry (TDR) technique. We evaluated our approach on a real vehicle network.
2020-10-14
Trevizan, Rodrigo D., Ruben, Cody, Nagaraj, Keerthiraj, Ibukun, Layiwola L., Starke, Allen C., Bretas, Arturo S., McNair, Janise, Zare, Alina.  2019.  Data-driven Physics-based Solution for False Data Injection Diagnosis in Smart Grids. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—5.
This paper presents a data-driven and physics-based method for detection of false data injection (FDI) in Smart Grids (SG). As the power grid transitions to the use of SG technology, it becomes more vulnerable to cyber-attacks like FDI. Current strategies for the detection of bad data in the grid rely on the physics based State Estimation (SE) process and statistical tests. This strategy is naturally vulnerable to undetected bad data as well as false positive scenarios, which means it can be exploited by an intelligent FDI attack. In order to enhance the robustness of bad data detection, the paper proposes the use of data-driven Machine Intelligence (MI) working together with current bad data detection via a combined Chi-squared test. Since MI learns over time and uses past data, it provides a different perspective on the data than the SE, which analyzes only the current data and relies on the physics based model of the system. This combined bad data detection strategy is tested on the IEEE 118 bus system.
2020-02-17
Malik, Yasir, Campos, Carlos Renato Salim, Jaafar, Fehmi.  2019.  Detecting Android Security Vulnerabilities Using Machine Learning and System Calls Analysis. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :109–113.
Android operating systems have become a prime target for cyber attackers due to security vulnerabilities in the underlying operating system and application design. Recently, anomaly detection techniques are widely studied for security vulnerabilities detection and classification. However, the ability of the attackers to create new variants of existing malware using various masking techniques makes it harder to deploy these techniques effectively. In this research, we present a robust and effective vulnerabilities detection approach based on anomaly detection in a system calls of benign and malicious Android application. The anomaly in our study is type, frequency, and sequence of system calls that represent a vulnerability. Our system monitors the processes of benign and malicious application and detects security vulnerabilities based on the combination of parameters and metrics, i.e., type, frequency and sequence of system calls to classify the process behavior as benign or malign. The detection algorithm detects the anomaly based on the defined scoring function f and threshold ρ. The system refines the detection process by applying machine learning techniques to find a combination of system call metrics and explore the relationship between security bugs and the pattern of system calls detected. The experiment results show the detection rate of the proposed algorithm based on precision, recall, and f-score for different machine learning algorithms.
2020-03-02
Zhao, Zhijun, Jiang, Zhengwei, Wang, Yueqiang, Chen, Guoen, Li, Bo.  2019.  Experimental Verification of Security Measures in Industrial Environments. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :498–502.
Industrial Control Security (ICS) plays an important role in protecting Industrial assets and processed from being tampered by attackers. Recent years witness the fast development of ICS technology. However there are still shortage of techniques and measures to verify the effectiveness of ICS approaches. In this paper, we propose a verification framework named vICS, for security measures in industrial environments. vICS does not requires installing any agent in industrial environments, and could be viewed as a non-intrusive way. We use vICS to evaluate the effectiveness of classic ICS techniques and measures through several experiments. The results shown that vICS provide an feasible solution for verifying the effectiveness of classic ICS techniques and measures for industrial environments.
2020-02-24
Ahmadi-Assalemi, Gabriela, al-Khateeb, Haider M., Epiphaniou, Gregory, Cosson, Jon, Jahankhani, Hamid, Pillai, Prashant.  2019.  Federated Blockchain-Based Tracking and Liability Attribution Framework for Employees and Cyber-Physical Objects in a Smart Workplace. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–9.
The systematic integration of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) into the supply chain to increase operational efficiency and quality has also introduced new complexities to the threat landscape. The myriad of sensors could increase data collection capabilities for businesses to facilitate process automation aided by Artificial Intelligence (AI) but without adopting an appropriate Security-by-Design framework, threat detection and response are destined to fail. The emerging concept of Smart Workplace incorporates many CPS (e.g. Robots and Drones) to execute tasks alongside Employees both of which can be exploited as Insider Threats. We introduce and discuss forensic-readiness, liability attribution and the ability to track moving Smart SPS Objects to support modern Digital Forensics and Incident Response (DFIR) within a defence-in-depth strategy. We present a framework to facilitate the tracking of object behaviour within Smart Controlled Business Environments (SCBE) to support resilience by enabling proactive insider threat detection. Several components of the framework were piloted in a company to discuss a real-life case study and demonstrate anomaly detection and the emerging of behavioural patterns according to objects' movement with relation to their job role, workspace position and nearest entry or exit. The empirical data was collected from a Bluetooth-based Proximity Monitoring Solution. Furthermore, a key strength of the framework is a federated Blockchain (BC) model to achieve forensic-readiness by establishing a digital Chain-of-Custody (CoC) and a collaborative environment for CPS to qualify as Digital Witnesses (DW) to support post-incident investigations.
2022-06-06
Boddy, Aaron, Hurst, William, Mackay, Michael, El Rhalibi, Abdennour.  2019.  A Hybrid Density-Based Outlier Detection Model for Privacy in Electronic Patient Record system. 2019 5th International Conference on Information Management (ICIM). :92–96.
This research concerns the detection of unauthorised access within hospital networks through the real-time analysis of audit logs. Privacy is a primary concern amongst patients due to the rising adoption of Electronic Patient Record (EPR) systems. There is growing evidence to suggest that patients may withhold information from healthcare providers due to lack of Trust in the security of EPRs. Yet, patient record data must be available to healthcare providers at the point of care. Ensuring privacy and confidentiality of that data is challenging. Roles within healthcare organisations are dynamic and relying on access control is not sufficient. Through proactive monitoring of audit logs, unauthorised accesses can be detected and presented to an analyst for review. Advanced data analytics and visualisation techniques can be used to aid the analysis of big data within EPR audit logs to identify and highlight pertinent data points. Employing a human-in-the-loop model ensures that suspicious activity is appropriately investigated and the data analytics is continuously improving. This paper presents a system that employs a Human-in-the-Loop Machine Learning (HILML) algorithm, in addition to a density-based local outlier detection model. The system is able to detect 145 anomalous behaviours in an unlabelled dataset of 1,007,727 audit logs. This equates to 0.014% of the EPR accesses being labelled as anomalous in a specialist Liverpool (UK) hospital.
2020-02-17
Broomandi, Fateme, Ghasemi, Abdorasoul.  2019.  An Improved Cooperative Cell Outage Detection in Self-Healing Het Nets Using Optimal Cooperative Range. 2019 27th Iranian Conference on Electrical Engineering (ICEE). :1956–1960.
Heterogeneous Networks (Het Nets) are introduced to fulfill the increasing demands of wireless communications. To be manageable, it is expected that these networks are self-organized and in particular, self-healing to detect and relief faults autonomously. In the Cooperative Cell Outage Detection (COD), the Macro-Base Station (MBS) and a group of Femto-Base Stations (FBSs) in a specific range are cooperatively communicating to find out if each FBS is working properly or not. In this paper, we discuss the impacts of the cooperation range on the detection delay and accuracy and then conclude that there is an optimal amount for cooperation range which maximizes detection accuracy. We then derive the optimal cooperative range that improves the detection accuracy by using network parameters such as FBS's transmission power, noise power, shadowing fading factor, and path-loss exponent and investigate the impacts of these parameters on the optimal cooperative range. The simulation results show the optimal cooperative range that we proposed maximizes the detection accuracy.
2020-05-11
OUIAZZANE, Said, ADDOU, Malika, BARRAMOU, Fatimazahra.  2019.  A Multi-Agent Model for Network Intrusion Detection. 2019 1st International Conference on Smart Systems and Data Science (ICSSD). :1–5.
The objective of this paper is to propose a distributed intrusion detection model based on a multi agent system. Mutli Agent Systems (MAS) are very suitable for intrusion detection systems as they meet the characteristics required by the networks and Big Data issues. The MAS agents cooperate and communicate with each other to ensure the effective detection of network intrusions without the intervention of an expert as used to be in the classical intrusion detection systems relying on signature matching to detect known attacks. The proposed model helped to detect known and unknown attacks within big computer infrastructure by responding to the network requirements in terms of distribution, autonomy, responsiveness and communication. The proposed model is capable of achieving a good and a real time intrusion detection using multi-agents paradigm and Hadoop Distributed File System (HDFS).
2020-08-07
Liu, Donglan, Zhang, Hao, Yu, Hao, Liu, Xin, Zhao, Yong, Lv, Guodong.  2019.  Research and Application of APT Attack Defense and Detection Technology Based on Big Data Technology. 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC). :1—4.
In order to excavate security threats in power grid by making full use of heterogeneous data sources in power information system, this paper proposes APT (Advanced Persistent Threat) attack detection sandbox technology and active defense system based on big data analysis technology. First, the file is restored from the mirror traffic and executed statically. Then, sandbox execution was carried out to introduce analysis samples into controllable virtual environment, and dynamic analysis and operation samples were conducted. Through analyzing the dynamic processing process of samples, various known and unknown malicious code, APT attacks, high-risk Trojan horses and other network security risks were comprehensively detected. Finally, the threat assessment of malicious samples is carried out and visualized through the big data platform. The results show that the method proposed in this paper can effectively warn of unknown threats, improve the security level of system data, have a certain active defense ability. And it can effectively improve the speed and accuracy of power information system security situation prediction.
2022-04-20
Ratasich, Denise, Khalid, Faiq, Geissler, Florian, Grosu, Radu, Shafique, Muhammad, Bartocci, Ezio.  2019.  A Roadmap Toward the Resilient Internet of Things for Cyber-Physical Systems. IEEE Access. 7:13260–13283.
The Internet of Things (IoT) is a ubiquitous system connecting many different devices - the things - which can be accessed from the distance. The cyber-physical systems (CPSs) monitor and control the things from the distance. As a result, the concepts of dependability and security get deeply intertwined. The increasing level of dynamicity, heterogeneity, and complexity adds to the system's vulnerability, and challenges its ability to react to faults. This paper summarizes the state of the art of existing work on anomaly detection, fault-tolerance, and self-healing, and adds a number of other methods applicable to achieve resilience in an IoT. We particularly focus on non-intrusive methods ensuring data integrity in the network. Furthermore, this paper presents the main challenges in building a resilient IoT for the CPS, which is crucial in the era of smart CPS with enhanced connectivity (an excellent example of such a system is connected autonomous vehicles). It further summarizes our solutions, work-in-progress and future work to this topic to enable ``Trustworthy IoT for CPS''. Finally, this framework is illustrated on a selected use case: a smart sensor infrastructure in the transport domain.
Conference Name: IEEE Access
2020-08-24
Maksuti, Silia, Schluga, Oliver, Settanni, Giuseppe, Tauber, Markus, Delsing, Jerker.  2019.  Self-Adaptation Applied to MQTT via a Generic Autonomic Management Framework. 2019 IEEE International Conference on Industrial Technology (ICIT). :1179–1185.
Manufacturing enterprises are constantly exploring new ways to improve their own production processes to address the increasing demand of customized production. However, such enterprises show a low degree of flexibility, which mainly results from the need to configure new production equipment at design and run time. In this paper we propose self-adaptation as an approach to improve data transmission flexibility in Industry 4.0 environments. We implement an autonomic manager using a generic autonomic management framework, which applies the most appropriate data transmission configuration based on security and business process related requirements, such as performance. The experimental evaluation is carried out in a MQTT infrastructure and the results show that using self-adaptation can significantly improve the trade-off between security and performance. We then propose to integrate anomaly detection methods as a solution to support self-adaptation by monitoring and learning the normal behavior of an industrial system and show how this can be used by the generic autonomic management framework.
2020-06-01
Talusan, Jose Paolo, Tiausas, Francis, Yasumoto, Keiichi, Wilbur, Michael, Pettet, Geoffrey, Dubey, Abhishek, Bhattacharjee, Shameek.  2019.  Smart Transportation Delay and Resiliency Testbed Based on Information Flow of Things Middleware. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :13–18.
Edge and Fog computing paradigms are used to process big data generated by the increasing number of IoT devices. These paradigms have enabled cities to become smarter in various aspects via real-time data-driven applications. While these have addressed some flaws of cloud computing some challenges remain particularly in terms of privacy and security. We create a testbed based on a distributed processing platform called the Information flow of Things (IFoT) middleware. We briefly describe a decentralized traffic speed query and routing service implemented on this framework testbed. We configure the testbed to test countermeasure systems that aim to address the security challenges faced by prior paradigms. Using this testbed, we investigate a novel decentralized anomaly detection approach for time-sensitive distributed smart transportation systems.