Liau, David, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.
2019.
Evaluation Framework for Future Privacy Protection Systems: A Dynamic Identity Ecosystem Approach. 2019 17th International Conference on Privacy, Security and Trust (PST). :1—3.
In this paper, we leverage previous work in the Identity Ecosystem, a Bayesian network mathematical representation of a person's identity, to create a framework to evaluate identity protection systems. Information dynamic is considered and a protection game is formed given that the owner and the attacker both gain some level of control over the status of other PII within the dynamic Identity Ecosystem. We present a policy iteration algorithm to solve the optimal policy for the game and discuss its convergence. Finally, an evaluation and comparison of identity protection strategies is provided given that an optimal policy is used against different protection policies. This study is aimed to understand the evolutionary process of identity theft and provide a framework for evaluating different identity protection strategies and future privacy protection system.
Bello-Ogunu, Emmanuel, Shehab, Mohamed, Miazi, Nazmus Sakib.
2019.
Privacy Is The Best Policy: A Framework for BLE Beacon Privacy Management. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:823—832.
Bluetooth Low Energy (BLE) beacons are an emerging type of technology in the Internet-of-Things (IoT) realm, which use BLE signals to broadcast a unique identifier that is detected by a compatible device to determine the location of nearby users. Beacons can be used to provide a tailored user experience with each encounter, yet can also constitute an invasion of privacy, due to their covertness and ability to track user behavior. Therefore, we hypothesize that user-driven privacy policy configuration is key to enabling effective and trustworthy privacy management during beacon encounters. We developed a framework for beacon privacy management that provides a policy configuration platform. Through an empirical analysis with 90 users, we evaluated this framework through a proof-of-concept app called Beacon Privacy Manager (BPM), which focused on the user experience of such a tool. Using BPM, we provided users with the ability to create privacy policies for beacons, testing different configuration schemes to refine the framework and then offer recommendations for future research.
Werner, Jorge, Westphall, Carla Merkle, Vargas, André Azevedo, Westphall, Carlos Becker.
2019.
Privacy Policies Model in Access Control. 2019 IEEE International Systems Conference (SysCon). :1—8.
With the increasing advancement of services on the Internet, due to the strengthening of cloud computing, the exchange of data between providers and users is intense. Management of access control and applications need data to identify users and/or perform services in an automated and more practical way. Applications have to protect access to data collected. However, users often provide data in cloud environments and do not know what was collected, how or by whom data will be used. Privacy of personal data has been a challenge for information security. This paper presents the development and use of a privacy policy strategy, i. e., it was proposed a privacy policy model and format to be integrated with the authorization task. An access control language and the preferences defined by the owner of information were used to implement the proposals. The results showed that the strategy is feasible, guaranteeing to the users the right over their data.
Sadique, Farhan, Bakhshaliyev, Khalid, Springer, Jeff, Sengupta, Shamik.
2019.
A System Architecture of Cybersecurity Information Exchange with Privacy (CYBEX-P). 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). :0493—0498.
Rapid evolution of cyber threats and recent trends in the increasing number of cyber-attacks call for adopting robust and agile cybersecurity techniques. Cybersecurity information sharing is expected to play an effective role in detecting and defending against new attacks. However, reservations and or-ganizational policies centering the privacy of shared data have become major setbacks in large-scale collaboration in cyber defense. The situation is worsened by the fact that the benefits of cyber-information exchange are not realized unless many actors participate. In this paper, we argue that privacy preservation of shared threat data will motivate entities to share threat data. Accordingly, we propose a framework called CYBersecurity information EXchange with Privacy (CYBEX-P) to achieve this. CYBEX-P is a structured information sharing platform with integrating privacy-preserving mechanisms. We propose a complete system architecture for CYBEX-P that guarantees maximum security and privacy of data. CYBEX-P outlines the details of a cybersecurity information sharing platform. The adoption of blind processing, privacy preservation, and trusted computing paradigms make CYBEX-P a versatile and secure information exchange platform.
Renjan, Arya, Narayanan, Sandeep Nair, Joshi, Karuna Pande.
2019.
A Policy Based Framework for Privacy-Respecting Deep Packet Inspection of High Velocity Network Traffic. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :47—52.
Deep Packet Inspection (DPI) is instrumental in investigating the presence of malicious activity in network traffic and most existing DPI tools work on unencrypted payloads. As the internet is moving towards fully encrypted data-transfer, there is a critical requirement for privacy-aware techniques to efficiently decrypt network payloads. Until recently, passive proxying using certain aspects of TLS 1.2 were used to perform decryption and further DPI analysis. With the introduction of TLS 1.3 standard that only supports protocols with Perfect Forward Secrecy (PFS), many such techniques will become ineffective. Several security solutions will be forced to adopt active proxying that will become a big-data problem considering the velocity and veracity of network traffic involved. We have developed an ABAC (Attribute Based Access Control) framework that efficiently supports existing DPI tools while respecting user's privacy requirements and organizational policies. It gives the user the ability to accept or decline access decision based on his privileges. Our solution evaluates various observed and derived attributes of network connections against user access privileges using policies described with semantic technologies. In this paper, we describe our framework and demonstrate the efficacy of our technique with the help of use-case scenarios to identify network connections that are candidates for Deep Packet Inspection. Since our technique makes selective identification of connections based on policies, both processing and memory load at the gateway will be reduced significantly.
Garigipati, Nagababu, Krishna, Reddy V.
2019.
A Study on Data Security and Query privacy in Cloud. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :337—341.
A lot of organizations need effective resolutions to record and evaluate the existing enormous volume of information. Cloud computing as a facilitator offers scalable resources and noteworthy economic assistances as the decreased operational expenditures. This model increases a wide set of security and privacy problems that have to be taken into reflexion. Multi-occupancy, loss of control, and confidence are the key issues in cloud computing situations. This paper considers the present know-hows and a comprehensive assortment of both previous and high-tech tasks on cloud security and confidentiality. The paradigm shift that supplements the usage of cloud computing is progressively enabling augmentation to safety and privacy contemplations linked with the different facades of cloud computing like multi-tenancy, reliance, loss of control and responsibility. So, cloud platforms that deal with big data that have sensitive information are necessary to use technical methods and structural precautions to circumvent data defence failures that might lead to vast and costly harms.
Fawaz, Kassem, Linden, Thomas, Harkous, Hamza.
2019.
Invited Paper: The Applications of Machine Learning in Privacy Notice and Choice. 2019 11th International Conference on Communication Systems Networks (COMSNETS). :118—124.
For more than two decades since the rise of the World Wide Web, the “Notice and Choice” framework has been the governing practice for the disclosure of online privacy practices. The emergence of new forms of user interactions, such as voice, and the enforcement of new regulations, such as the EU's recent General Data Protection Regulation (GDPR), promise to change this privacy landscape drastically. This paper discusses the challenges towards providing the privacy stakeholders with privacy awareness and control in this changing landscape. We will also present our recent research on utilizing Machine learning to analyze privacy policies and settings.
Alom, Md. Zulfikar, Carminati, Barbara, Ferrari, Elena.
2019.
Adapting Users' Privacy Preferences in Smart Environments. 2019 IEEE International Congress on Internet of Things (ICIOT). :165—172.
A smart environment is a physical space where devices are connected to provide continuous support to individuals and make their life more comfortable. For this purpose, a smart environment collects, stores, and processes a massive amount of personal data. In general, service providers collect these data according to their privacy policies. To enhance the privacy control, individuals can explicitly express their privacy preferences, stating conditions on how their data have to be used and managed. Typically, privacy checking is handled through the hard matching of users' privacy preferences against service providers' privacy policies, by denying all service requests whose privacy policies do not fully match with individual's privacy preferences. However, this hard matching might be too restrictive in a smart environment because it denies the services that partially satisfy the individual's privacy preferences. To cope with this challenge, in this paper, we propose a soft privacy matching mechanism, able to relax, in a controlled way, some conditions of users' privacy preferences such to match with service providers' privacy policies. At this aim, we exploit machine learning algorithms to build a classifier, which is able to make decisions on future service requests, by learning which privacy preference components a user is prone to relax, as well as the relaxation tolerance. We test our approach on two realistic datasets, obtaining promising results.
Lachner, Clemens, Rausch, Thomas, Dustdar, Schahram.
2019.
Context-Aware Enforcement of Privacy Policies in Edge Computing. 2019 IEEE International Congress on Big Data (BigDataCongress). :1—6.
Privacy is a fundamental concern that confronts systems dealing with sensitive data. The lack of robust solutions for defining and enforcing privacy measures continues to hinder the general acceptance and adoption of these systems. Edge computing has been recognized as a key enabler for privacy enhanced applications, and has opened new opportunities. In this paper, we propose a novel privacy model based on context-aware edge computing. Our model leverages the context of data to make decisions about how these data need to be processed and managed to achieve privacy. Based on a scenario from the eHealth domain, we show how our generalized model can be used to implement and enact complex domain-specific privacy policies. We illustrate our approach by constructing real world use cases involving a mobile Electronic Health Record that interacts with, and in different environments.
Gerl, Armin, Becher, Stefan.
2019.
Policy-Based De-Identification Test Framework. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:356—357.
Protecting privacy of individuals is a basic right, which has to be considered in our data-centered society in which new technologies emerge rapidly. To preserve the privacy of individuals de-identifying technologies have been developed including pseudonymization, personal privacy anonymization, and privacy models. Each having several variations with different properties and contexts which poses the challenge for the proper selection and application of de-identification methods. We tackle this challenge proposing a policy-based de-identification test framework for a systematic approach to experimenting and evaluation of various combinations of methods and their interplay. Evaluation of the experimental results regarding performance and utility is considered within the framework. We propose a domain-specific language, expressing the required complex configuration options, including data-set, policy generator, and various de-identification methods.