Biblio

Found 15086 results

Filters: Keyword is pubcrawl  [Clear All Filters]
2023-04-28
Iqbal, Sarfraz.  2022.  Analyzing Initial Design Theory Components for Developing Information Security Laboratories. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :36–40.
Online information security labs intended for training and facilitating hands-on learning for distance students at master’s level are not easy to develop and administer. This research focuses on analyzing the results of a DSR project for design, development, and implementation of an InfoSec lab. This research work contributes to the existing research by putting forth an initial outline of a generalized model for design theory for InfoSec labs aimed at hands-on education of students in the field of information security. The anatomy of design theory framework is used to analyze the necessary components of the anticipated design theory for InfoSec labs in future.
2023-02-17
Aartsen, Max, Banga, Kanta, Talko, Konrad, Touw, Dustin, Wisman, Bertus, Meïnsma, Daniel, Björkqvist, Mathias.  2022.  Analyzing Interoperability and Security Overhead of ROS2 DDS Middleware. 2022 30th Mediterranean Conference on Control and Automation (MED). :976–981.
Robot Operating System 2 (ROS2) is the latest release of a framework for enabling robot applications. Data Distribution Service (DDS) middleware is used for communication between nodes in a ROS2 cluster. The DDS middleware provides a distributed discovery system, message definitions and serialization, and security. In ROS2, the DDS middleware is accessed through an abstraction layer, making it easy to switch from one implementation to another. The existing middleware implementations differ in a number of ways, e.g., in how they are supported in ROS2, in their support for the security features, their ease of use, their performance, and their interoperability. In this work, the focus is on the ease of use, interoperability, and security features aspects of ROS2 DDS middleware. We compare the ease of installation and ease of use of three different DDS middleware, and test the interoperability of different middleware combinations in simple deployment scenarios. We highlight the difference that enabling the security option makes to interoperability, and conduct performance experiments that show the effect that turning on security has on the communication performance. Our results provide guidelines for choosing and deploying DDS middleware on a ROS2 cluster.
ISSN: 2473-3504
2023-06-22
Hasegawa, Taichi, Saito, Taiichi, Sasaki, Ryoichi.  2022.  Analyzing Metadata in PDF Files Published by Police Agencies in Japan. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :145–151.
In recent years, new types of cyber attacks called targeted attacks have been observed. It targets specific organizations or individuals, while usual large-scale attacks do not focus on specific targets. Organizations have published many Word or PDF files on their websites. These files may provide the starting point for targeted attacks if they include hidden data unintentionally generated in the authoring process. Adhatarao and Lauradoux analyzed hidden data found in the PDF files published by security agencies in many countries and showed that many PDF files potentially leak information like author names, details on the information system and computer architecture. In this study, we analyze hidden data of PDF files published on the website of police agencies in Japan and compare the results with Adhatarao and Lauradoux's. We gathered 110989 PDF files. 56% of gathered PDF files contain personal names, organization names, usernames, or numbers that seem to be IDs within the organizations. 96% of PDF files contain software names.
ISSN: 2693-9371
2023-04-14
Qian, Jun, Gan, Zijie, Zhang, Jie, Bhunia, Suman.  2022.  Analyzing SocialArks Data Leak - A Brute Force Web Login Attack. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :21–27.
In this work, we discuss data breaches based on the “2012 SocialArks data breach” case study. Data leakage refers to the security violations of unauthorized individuals copying, transmitting, viewing, stealing, or using sensitive, protected, or confidential data. Data leakage is becoming more and more serious, for those traditional information security protection methods like anti-virus software, intrusion detection, and firewalls have been becoming more and more challenging to deal with independently. Nevertheless, fortunately, new IT technologies are rapidly changing and challenging traditional security laws and provide new opportunities to develop the information security market. The SocialArks data breach was caused by a misconfiguration of ElasticSearch Database owned by SocialArks, owned by “Tencent.” The attack methodology is classic, and five common Elasticsearch mistakes discussed the possibilities of those leakages. The defense solution focuses on how to optimize the Elasticsearch server. Furthermore, the ElasticSearch database’s open-source identity also causes many ethical problems, which means that anyone can download and install it for free, and they can install it almost anywhere. Some companies download it and install it on their internal servers, while others download and install it in the cloud (on any provider they want). There are also cloud service companies that provide hosted versions of Elasticsearch, which means they host and manage Elasticsearch clusters for their customers, such as Company Tencent.
2022-12-09
Ikeda, Yoshiki, Sawada, Kenji.  2022.  Anomaly Detection and Anomaly Location Model for Multiple Attacks Using Finite Automata. 2022 IEEE International Conference on Consumer Electronics (ICCE). :01—06.
In control systems, the operation of the system after an incident occurs is important. This paper proposes to design a whitelist model that can detect anomalies and identify locations of anomalous actuators using finite automata during multiple actuators attack. By applying this model and comparing the whitelist model with the operation data, the monitoring system detects anomalies and identifies anomaly locations of actuator that deviate from normal operation. We propose to construct a whitelist model focusing on the order of the control system operation using binary search trees, which can grasp the state of the system when anomalies occur. We also apply combinatorial compression based on BDD (Binary Decision Diagram) to the model to speed up querying and identification of abnormalities. Based on the model designed in this study, we aim to construct a secured control system that selects and executes an appropriate fallback operation based on the state of the system when anomaly is detected.
2023-08-18
Li, Shijie, Liu, Junjiao, Pan, Zhiwen, Lv, Shichao, Si, Shuaizong, Sun, Limin.  2022.  Anomaly Detection based on Robust Spatial-temporal Modeling for Industrial Control Systems. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :355—363.
Industrial Control Systems (ICS) are increasingly facing the threat of False Data Injection (FDI) attacks. As an emerging intrusion detection scheme for ICS, process-based Intrusion Detection Systems (IDS) can effectively detect the anomalies caused by FDI attacks. Specifically, such IDS establishes anomaly detection model which can describe the normal pattern of industrial processes, then perform real-time anomaly detection on industrial process data. However, this method suffers low detection accuracy due to the complexity and instability of industrial processes. That is, the process data inherently contains sophisticated nonlinear spatial-temporal correlations which are hard to be explicitly described by anomaly detection model. In addition, the noise and disturbance in process data prevent the IDS from distinguishing the real anomaly events. In this paper, we propose an Anomaly Detection approach based on Robust Spatial-temporal Modeling (AD-RoSM). Concretely, to explicitly describe the spatial-temporal correlations within the process data, a neural based state estimation model is proposed by utilizing 1D CNN for temporal modeling and multi-head self attention mechanism for spatial modeling. To perform robust anomaly detection in the presence of noise and disturbance, a composite anomaly discrimination model is designed so that the outputs of the state estimation model can be analyzed with a combination of threshold strategy and entropy-based strategy. We conducted extensive experiments on two benchmark ICS security datasets to demonstrate the effectiveness of our approach.
2023-01-20
Alkuwari, Ahmad N., Al-Kuwari, Saif, Qaraqe, Marwa.  2022.  Anomaly Detection in Smart Grids: A Survey From Cybersecurity Perspective. 2022 3rd International Conference on Smart Grid and Renewable Energy (SGRE). :1—7.
Smart grid is the next generation for power generation, consumption and distribution. However, with the introduction of smart communication in such sensitive components, major risks from cybersecurity perspective quickly emerged. This survey reviews and reports on the state-of-the-art techniques for detecting cyber attacks in smart grids, mainly through machine learning techniques.
2023-05-12
Arca, Sevgi, Hewett, Rattikorn.  2022.  Anonymity-driven Measures for Privacy. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :6–10.
In today’s world, digital data are enormous due to technologies that advance data collection, storage, and analyses. As more data are shared or publicly available, privacy is of great concern. Having privacy means having control over your data. The first step towards privacy protection is to understand various aspects of privacy and have the ability to quantify them. Much work in structured data, however, has focused on approaches to transforming the original data into a more anonymous form (via generalization and suppression) while preserving the data integrity. Such anonymization techniques count data instances of each set of distinct attribute values of interest to signify the required anonymity to protect an individual’s identity or confidential data. While this serves the purpose, our research takes an alternative approach to provide quick privacy measures by way of anonymity especially when dealing with large-scale data. This paper presents a study of anonymity measures based on their relevant properties that impact privacy. Specifically, we identify three properties: uniformity, variety, and diversity, and formulate their measures. The paper provides illustrated examples to evaluate their validity and discusses the use of multi-aspects of anonymity and privacy measures.
2023-09-08
Bai, Songhao, Zhang, Zhen.  2022.  Anonymous Identity Authentication scheme for Internet of Vehicles based on moving target Defense. 2021 International Conference on Advanced Computing and Endogenous Security. :1–4.
As one of the effective methods to enhance traffic safety and improve traffic efficiency, the Internet of vehicles has attracted wide attention from all walks of life. V2X secure communication, as one of the research hotspots of the Internet of vehicles, also has many security and privacy problems. Attackers can use these vulnerabilities to obtain vehicle identity information and location information, and can also attack vehicles through camouflage.Therefore, the identity authentication process in vehicle network communication must be effectively protected. The anonymous identity authentication scheme based on moving target defense proposed in this paper not only ensures the authenticity and integrity of information sources, but also avoids the disclosure of vehicle identity information.
2023-07-12
Sreeja, C.S., Misbahuddin, Mohammed.  2022.  Anticounterfeiting Method for Drugs Using Synthetic DNA Cryptography. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—5.
Counterfeited products are a significant problem in both developed and developing countries and has become more critical as an aftermath of COVID-19, exclusively for drugs and medical equipment’s. In this paper, an innovative approach is proposed to resist counterfeiting which is based on the principles of Synthetic DNA. The proposed encryption approach has employed the distinctive features of synthetic DNA in amalgamation with DNA encryption to provide information security and functions as an anticounterfeiting method that ensures usability. The scheme’s security analysis and proof of concept are detailed. Scyther is used to carry out the formal analysis of the scheme, and all of the modeled assertions are verified without any attacks.
2023-02-03
Wibawa, Dikka Aditya Satria, Setiawan, Hermawan, Girinoto.  2022.  Anti-Phishing Game Framework Based on Extended Design Play Experience (DPE) Framework as an Educational Media. 2022 7th International Workshop on Big Data and Information Security (IWBIS). :107–112.
The main objective of this research is to increase security awareness against phishing attacks in the education sector by teaching users about phishing URLs. The educational media was made based on references from several previous studies that were used as basic references. Development of antiphishing game framework educational media using the extended DPE framework. Participants in this study were vocational and college students in the technology field. The respondents included vocational and college students, each with as many as 30 respondents. To assess the level of awareness and understanding of phishing, especially phishing URLs, participants will be given a pre-test before playing the game, and after completing the game, the application will be given a posttest. A paired t-test was used to answer the research hypothesis. The results of data analysis show differences in the results of increasing identification of URL phishing by respondents before and after using educational media of the anti-phishing game framework in increasing security awareness against URL phishing attacks. More serious game development can be carried out in the future to increase user awareness, particularly in phishing or other security issues, and can be implemented for general users who do not have a background in technology.
2023-02-17
Ye, Kai Zhen.  2022.  Application and Parallel Sandbox Testing Architecture for Network Security Isolation based on Cloud Desktop. 2022 International Conference on Inventive Computation Technologies (ICICT). :879–882.
Network security isolation technology is an important means to protect the internal information security of enterprises. Generally, isolation is achieved through traditional network devices, such as firewalls and gatekeepers. However, the security rules are relatively rigid and cannot better meet the flexible and changeable business needs. Through the double sandbox structure created for each user, each user in the virtual machine is isolated from each other and security is ensured. By creating a virtual disk in a virtual machine as a user storage sandbox, and encrypting the read and write of the disk, the shortcomings of traditional network isolation methods are discussed, and the application of cloud desktop network isolation technology based on VMwarer technology in universities is expounded.
ISSN: 2767-7788
2023-08-24
Veeraiah, Vivek, Kumar, K Ranjit, Lalitha Kumari, P., Ahamad, Shahanawaj, Bansal, Rohit, Gupta, Ankur.  2022.  Application of Biometric System to Enhance the Security in Virtual World. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :719–723.
Virtual worlds was becoming increasingly popular in a variety of fields, including education, business, space exploration, and video games. Establishing the security of virtual worlds was becoming more critical as they become more widely used. Virtual users were identified using a behavioral biometric system. Improve the system's ability to identify objects by fusing scores from multiple sources. Identification was based on a review of user interactions in virtual environments and a comparison with previous recordings in the database. For behavioral biometric systems like the one described, it appears that score-level biometric fusion was a promising tool for improving system performance. As virtual worlds become more immersive, more people will want to participate in them, and more people will want to be able to interact with each other. Each region of the Meta-verse was given a glimpse of the current state of affairs and the trends to come. As hardware performance and institutional and public interest continue to improve, the Meta-verse's development is hampered by limitations like computational method limits and a lack of realized collaboration between virtual world stakeholders and developers alike. A major goal of the proposed research was to verify the accuracy of the biometric system to enhance the security in virtual world. In this study, the precision of the proposed work was compared to that of previous work.
2023-09-08
Sengul, M. Kutlu, Tarhan, Cigdem, Tecim, Vahap.  2022.  Application of Intelligent Transportation System Data using Big Data Technologies. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU). :1–6.
Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
ISSN: 2770-7946
2023-06-22
Das, Soumyajit, Dayam, Zeeshaan, Chatterjee, Pinaki Sankar.  2022.  Application of Random Forest Classifier for Prevention and Detection of Distributed Denial of Service Attacks. 2022 OITS International Conference on Information Technology (OCIT). :380–384.
A classification issue in machine learning is the issue of spotting Distributed Denial of Service (DDos) attacks. A Denial of Service (DoS) assault is essentially a deliberate attack launched from a single source with the implied intent of rendering the target's application unavailable. Attackers typically aims to consume all available network bandwidth in order to accomplish this, which inhibits authorized users from accessing system resources and denies them access. DDoS assaults, in contrast to DoS attacks, include several sources being used by the attacker to launch an attack. At the network, transportation, presentation, and application layers of a 7-layer OSI architecture, DDoS attacks are most frequently observed. With the help of the most well-known standard dataset and multiple regression analysis, we have created a machine learning model in this work that can predict DDoS and bot assaults based on traffic.
2022-12-20
Xu, Zheng.  2022.  The application of white-box encryption algorithms for distributed devices on the Internet of Things. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :298–301.
With the rapid development of the Internet of Things and the exploration of its application scenarios, embedded devices are deployed in various environments to collect information and data. In such environments, the security of embedded devices cannot be guaranteed and are vulnerable to various attacks, even device capture attacks. When embedded devices are attacked, the attacker can obtain the information transmitted by the channel during the encryption process and the internal operation of the encryption. In this paper, we analyze various existing white-box schemes and show whether they are suitable for application in IoT. We propose an application of WBEAs for distributed devices in IoT scenarios and conduct experiments on several devices in IoT scenarios.
2023-06-29
Zavala, Álvaro, Maye, Leonel.  2022.  Application to manage digital certificates as a Certificate Authority (CA) according to the Digital Signature Law of El Salvador. 2022 IEEE 40th Central America and Panama Convention (CONCAPAN). :1–6.
Currently in El Salvador, efforts are being made to implement the digital signature and as part of this technology, a Public Key Infrastructure (PKI) is required, which must validate Certificate Authorities (CA). For a CA, it is necessary to implement the software that allows it to manage digital certificates and perform security procedures for the execution of cryptographic operations, such as encryption, digital signatures, and non-repudiation of electronic transactions. The present work makes a proposal for a digital certificate management system according to the Digital Signature Law of El Salvador and secure cryptography standards. Additionally, a security discussion is accomplished.
2023-04-14
Tikekar, Priyanka C., Sherekar, Swati S., Thakre, Vilas M..  2022.  An Approach for P2P Based Botnet Detection Using Machine Learning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :627–631.
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
2023-01-13
Boodai, Razan M., Alessa, Hadeel A., Alanazi, Arwa H..  2022.  An Approach to Address Risk Management Challenges: Focused on IT Governance Framework. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :184–188.
Information Technology (IT) governance crosses the organization practices, culture, and policy that support IT management in controlling five key functions, which are strategic alignment, performance management, resource management, value delivery, and risk management. The line of sight is extended from the corporate strategy to the risk management, and risk controls are assessed against operational goals. Thus, the risk management model is concerned with ensuring that the corporate risks are sufficiently controlled and managed. Many organizations rely on IT services to facilitate and sustain their operations, which mandate the existence of a risk management model in their IT governance. This paper examines prior research based on IT governance by using a risk management framework. It also proposes a new method for calculating and classifying IT-related risks. Additionally, we assessed our technique with one of the critical IT services that proves the reliability and accuracy of the implemented model.
2023-04-14
Debnath, Sristi, Kar, Nirmalya.  2022.  An Approach Towards Data Security Based on DCT and Chaotic Map. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–5.
Currently, the rapid development of digital communication and multimedia has made security an increasingly prominent issue of communicating, storing, and transmitting digital data such as images, audio, and video. Encryption techniques such as chaotic map based encryption can ensure high levels of security of data and have been used in many fields including medical science, military, and geographic satellite imagery. As a result, ensuring image data confidentiality, integrity, security, privacy, and authenticity while transferring and storing images over an unsecured network like the internet has become a high concern. There have been many encryption technologies proposed in recent years. This paper begins with a summary of cryptography and image encryption basics, followed by a discussion of different kinds of chaotic image encryption techniques and a literature review for each form of encryption. Finally, by examining the behaviour of numerous existing chaotic based image encryption algorithms, this paper hopes to build new chaotic based image encryption strategies in the future.
2023-01-20
Rahim, Usva, Siddiqui, Muhammad Faisal, Javed, Muhammad Awais, Nafi, Nazmus.  2022.  Architectural Implementation of AES based 5G Security Protocol on FPGA. 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC). :1–6.
Confidentiality and integrity security are the key challenges in future 5G networks. To encounter these challenges, various signature and key agreement protocols are being implemented in 5G systems to secure high-speed mobile-to-mobile communication. Many security ciphers such as SNOW 3G, Advanced Encryption Standard (AES), and ZUC are used for 5G security. Among these protocols, the AES algorithm has been shown to achieve higher hardware efficiency and throughput in the literature. In this paper, we implement the AES algorithm on Field Programmable Gate Array (FPGA) and real-time performance factors of the AES algorithm were exploited to best fit the needs and requirements of 5G. In addition, several modifications such as partial pipelining and deep pipelining (partial pipelining with sub-module pipelining) are implemented on Virtex 6 FPGA ML60S board to improve the throughput of the proposed design.
2023-02-17
Ruwin R. Ratnayake, R.M., Abeysiriwardhena, G.D.N.D.K., Perera, G.A.J., Senarathne, Amila, Ponnamperuma, R., Ganegoda, B.A..  2022.  ARGUS – An Adaptive Smart Home Security Solution. 2022 4th International Conference on Advancements in Computing (ICAC). :459–464.
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.
2022-12-09
Waguie, Francxa Tagne, Al-Turjman, Fadi.  2022.  Artificial Intelligence for Edge Computing Security: A Survey. 2022 International Conference on Artificial Intelligence in Everything (AIE). :446—450.
Edge computing is a prospective notion for expanding the potential of cloud computing. It is vital to maintaining a decent atmosphere free of all forms of security and breaches in order to continue utilizing computer services. The security concerns surrounding the edge computing environment has been impeded as a result of the security issues that surround the area. Many researchers have looked into edge computing security issues, however, not all have thoroughly studied the needs. Security requirements are the goals that specify the capabilities and operations that a process that is carried out by a system in order to eliminate various security flaws. The purpose of this study is to give a complete overview of the many different artificial intelligence technologies that are now being utilized for edge computing security with the intention of aiding research in the future in locating research potential. This article analyzed the most recent research and shed light on the following topics: state-of-the-art techniques used to combat security threats, technological trends used by the method, metrics utilize to assess the techniques' ability, and opportunities of research for future researchers in the area of artificial intelligence for edge computing security.
2023-05-12
Ornik, Melkior, Bouvier, Jean-Baptiste.  2022.  Assured System-Level Resilience for Guaranteed Disaster Response. 2022 IEEE International Smart Cities Conference (ISC2). :1–4.
Resilience of urban infrastructure to sudden, system-wide, potentially catastrophic events is a critical need across domains. The growing connectivity of infrastructure, including its cyber-physical components which can be controlled in real time, offers an attractive path towards rapid adaptation to adverse events and adjustment of system objectives. However, existing work in the field often offers disjoint approaches that respond to particular scenarios. On the other hand, abstract work on control of complex systems focuses on attempting to adapt to the changes in the system dynamics or environment, but without understanding that the system may simply not be able to perform its original task after an adverse event. To address this challenge, this programmatic paper proposes a vision for a new paradigm of infrastructure resilience. Such a framework treats infrastructure across domains through a unified theory of controlled dynamical systems, but remains cognizant of the lack of knowledge about the system following a widespread adverse event and aims to identify the system's fundamental limits. As a result, it will enable the infrastructure operator to assess and assure system performance following an adverse event, even if the exact nature of the event is not yet known. Building off ongoing work on assured resilience of control systems, in this paper we identify promising early results, challenges that motivate the development of resilience theory for infrastructure system, and possible paths forward for the proposed effort.
ISSN: 2687-8860
2023-06-16
Yue, Zhengyu, Yao, Yuanzhi, Li, Weihai, Yu, Nenghai.  2022.  ATDD: Fine-Grained Assured Time-Sensitive Data Deletion Scheme in Cloud Storage. ICC 2022 - IEEE International Conference on Communications. :3448—3453.
With the rapid development of general cloud services, more and more individuals or collectives use cloud platforms to store data. Assured data deletion deserves investigation in cloud storage. In time-sensitive data storage scenarios, it is necessary for cloud platforms to automatically destroy data after the data owner-specified expiration time. Therefore, assured time-sensitive data deletion should be sought. In this paper, a fine-grained assured time-sensitive data deletion (ATDD) scheme in cloud storage is proposed by embedding the time trapdoor in Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Time-sensitive data is self-destructed after the data owner-specified expiration time so that the authorized users cannot get access to the related data. In addition, a credential is returned to the data owner for data deletion verification. This proposed scheme provides solutions for fine-grained access control and verifiable data self-destruction. Detailed security and performance analysis demonstrate the security and the practicability of the proposed scheme.