Biblio
We propose a lightweight RFID authentication protocol that supports forward and backward security. The only cryptographic mechanism that this protocol uses is a pseudorandom number generator (PRNG) that is shared with the backend Server. Authentication is achieved by exchanging a few numbers (3 or 5) drawn from the PRNG. The lookup time is constant, and the protocol can be easily adapted to prevent online man-in-the-middle relay attacks. Security is proven in the UC security framework.
Protecting energy consumers's data and privacy is a key factor for the further adoption and diffusion of smart grid technologies and applications. However, current smart grid initiatives and implementations around the globe tend to either focus on the need for technical security to the detriment of privacy or consider privacy as a feature to add after system design. This paper aims to contribute towards filling the gap between this fact and the accepted wisdom that privacy concerns should be addressed as early as possible (preferably when modeling system's requirements). We present a methodological framework for tackling privacy concerns throughout all phases of the smart grid system development process. We describe methods and guiding principles to help smart grid engineers to elicit and analyze privacy threats and requirements from the outset of the system development, and derive the best suitable countermeasures, i.e. privacy enhancing technologies (PETs), accordingly. The paper also provides a summary of modern PETs, and discusses their context of use and contributions with respect to the underlying privacy engineering challenges and the smart grid setting being considered.
The automatic face tracking and detection has been one of the fastest developing areas due to its wide range of application, security and surveillance application in particular. It has been one of the most interest subjects, which suppose but yet to be wholly explored in various research areas due to various distinctive factors: varying ethnic groups, sizes, orientations, poses, occlusions and lighting conditions. The focus of this paper is to propose an improve algorithm to speed up the face tracking and detection process with the simple and efficient proposed novel edge detector to reject the non-face-likes regions, hence reduce the false detection rate in an automatic face tracking and detection in still images with multiple faces for facial expression system. The correct rates of 95.9% on the Haar face detection and proposed novel edge detector, which is higher 6.1% than the primitive integration of Haar and canny edge detector.
Computational soundness results show that under certain conditions it is possible to conclude computational security whenever symbolic security holds. Unfortunately, each soundness result is usually established for some set of cryptographic primitives and extending the result to encompass new primitives typically requires redoing most of the work. In this paper we suggest a way of getting around this problem. We propose a notion of computational soundness that we term deduction soundness. As for other soundness notions, our definition captures the idea that a computational adversary does not have any more power than a symbolic adversary. However, a key aspect of deduction soundness is that it considers, intrinsically, the use of the primitives in the presence of functions specified by the adversary. As a consequence, the resulting notion is amenable to modular extensions. We prove that a deduction sound implementation of some arbitrary primitives can be extended to include asymmetric encryption and public data-structures (e.g. pairings or list), without repeating the original proof effort. Furthermore, our notion of soundness concerns cryptographic primitives in a way that is independent of any protocol specification language. Nonetheless, we show that deduction soundness leads to computational soundness for languages (or protocols) that satisfy a so called commutation property.
Current post-mortem cyber-forensic techniques may cause significant disruption to the evidence gathering process by breaking active network connections and unmounting encrypted disks. Although newer live forensic analysis tools can preserve active state, they may taint evidence by leaving footprints in memory. To help address these concerns we present Forenscope, a framework that allows an investigator to examine the state of an active system without the effects of taint or forensic blurriness caused by analyzing a running system. We show how Forenscope can fit into accepted workflows to improve the evidence gathering process. Forenscope preserves the state of the running system and allows running processes, open files, encrypted filesystems and open network sockets to persist during the analysis process. Forenscope has been tested on live systems to show that it does not operationally disrupt critical processes and that it can perform an analysis in less than 15 seconds while using only 125 KB of memory. We show that Forenscope can detect stealth rootkits, neutralize threats and expedite the investigation process by finding evidence in memory.
In this paper we propose a mechanism of prediction of domestic human activity in a smart home context. We use those predictions to adapt the behavior of home appliances whose impact on the environment is delayed (for example the heating). The behaviors of appliances are built by a reinforcement learning mechanism. We compare the behavior built by the learning approach with both a merely reactive behavior and a state-remanent behavior.
Edge detection of bottle opening is a primary section to the machine vision based bottle opening detection system. This paper, taking advantage of the Balloon Snake, on the PET (Polyethylene Terephthalate) images sampled at rotating bottle-blowing machine producing pipelines, extracts the opening. It first uses the grayscale weighting average method to calculate the centroid as the initial position of Snake and then based on the energy minimal theory, it extracts the opening. Experiments show that compared with the conventional edge detection and center location methods, Balloon Snake is robust and can easily step over the weak noise points. Edge extracted thorough Balloon Snake is more integral and continuous which provides a guarantee to correctly judge the opening.
Contrary to widespread assumption, dynamic RAM (DRAM), the main memory in most modern computers, retains its contents for several seconds after power is lost, even at room temperature and even if removed from a motherboard. Although DRAM becomes less reliable when it is not refreshed, it is not immediately erased, and its contents persist sufficiently for malicious (or forensic) acquisition of usable full-system memory images. We show that this phenomenon limits the ability of an operating system to protect cryptographic key material from an attacker with physical access to a machine. It poses a particular threat to laptop users who rely on disk encryption: we demonstrate that it could be used to compromise several popular disk encryption products without the need for any special devices or materials. We experimentally characterize the extent and predictability of memory retention and report that remanence times can be increased dramatically with simple cooling techniques. We offer new algorithms for finding cryptographic keys in memory images and for correcting errors caused by bit decay. Though we discuss several strategies for mitigating these risks, we know of no simple remedy that would eliminate them.
REMAN is a reputation management infrastructure for composite Web services. It supports the aggregation of client feedback on the perceived QoS of external services, using reputation mechanisms to build service rankings. Changes in rankings are pro-actively notified to composite service clients to enable self-tuning properties in their execution.
A THz image edge detection approach based on wavelet and neural network is proposed in this paper. First, the source image is decomposed by wavelet, the edges in the low-frequency sub-image are detected using neural network method and the edges in the high-frequency sub-images are detected using wavelet transform method on the coarsest level of the wavelet decomposition, the two edge images are fused according to some fusion rules to obtain the edge image of this level, it then is projected to the next level. Afterwards the final edge image of L-1 level is got according to some fusion rule. This process is repeated until reaching the 0 level thus to get the final integrated and clear edge image. The experimental results show that our approach based on fusion technique is superior to Canny operator method and wavelet transform method alone.
Vehicle-logo location is a crucial step in vehicle-logo recognition system. In this paper, a novel approach of the vehicle-logo location based on edge detection and morphological filter is proposed. Firstly, the approximate location of the vehicle-logo region is determined by the prior knowledge about the position of the vehicle-logo; Secondly, the texture measure is defined to recognize the texture of the vehicle-logo background; Then, vertical edge detection is executed for the vehicle-logo background with the horizontal texture and horizontal edge detection is implemented for the vehicle-logo background with the vertical texture; Finally, position of the vehicle-logo is located accurately by mathematical morphology filter. Experimental results show the proposed method is effective.
BootJacker is a proof-of-concept attack tool which demonstrates that authentication mechanisms employed by an operating system can be bypassed by obtaining physical access and simply forcing a restart. The key insight that enables this attack is that the contents of memory on some machines are fully preserved across a warm boot. Upon a reboot, BootJacker uses this residual memory state to revive the original host operating system environment and run malicious payloads. Using BootJacker, an attacker can break into a locked user session and gain access to open encrypted disks, web browser sessions or other secure network connections. BootJacker's non-persistent design makes it possible for an attacker to leave no traces on the victim machine.
Different organizations or countries maybe adopt different PKI trust model in real applications. On a large scale, all certification authorities (CA) and end entities construct a huge mesh network. PKI trust model exhibits unstructured mesh network as a whole. However, mesh trust model worsens computational complexity in certification path processing when the number of PKI domains increases. This paper proposes an enhanced mesh trust model for PKI. Keys generation and signature are fulfilled in Trusted Platform Module (TPM) for higher security level. An algorithm is suggested to improve the performance of certification path processing in this model. This trust model is less complex but more efficient and robust than the existing PKI trust models.
In this paper we consider recovering data from USB Flash memory sticks after they have been damaged or electronically erased. We describe the physical structure and theory of operation of Flash memories; review the literature of Flash memory data recovery; and report results of new experiments in which we damage USB Flash memory sticks and attempt to recover their contents. The experiments include smashing and shooting memory sticks, incinerating them in petrol and cooking them in a microwave oven.