Biblio

Found 1162 results

Filters: Keyword is Collaboration  [Clear All Filters]
2021-05-26
Yang, Wenti, Wang, Ruimiao, Guan, Zhitao, Wu, Longfei, Du, Xiaojiang, Guizani, Mohsen.  2020.  A Lightweight Attribute Based Encryption Scheme with Constant Size Ciphertext for Internet of Things. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—6.

The Internet of Things technology has been used in a wide range of fields, ranging from industrial applications to individual lives. As a result, a massive amount of sensitive data is generated and transmitted by IoT devices. Those data may be accessed by a large number of complex users. Therefore, it is necessary to adopt an encryption scheme with access control to achieve more flexible and secure access to sensitive data. The Ciphertext Policy Attribute-Based Encryption (CP-ABE) can achieve access control while encrypting data can match the requirements mentioned above. However, the long ciphertext and the slow decryption operation makes it difficult to be used in most IoT devices which have limited memory size and computing capability. This paper proposes a modified CP-ABE scheme, which can implement the full security (adaptive security) under the access structure of AND gate. Moreover, the decryption overhead and the length of ciphertext are constant. Finally, the analysis and experiments prove the feasibility of our scheme.

2021-09-07
Bülbül, Nuref\c san Sertba\c s, Fischer, Mathias.  2020.  SDN/NFV-Based DDoS Mitigation via Pushback. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Distributed Denial of Service (DDoS) attacks aim at bringing down or decreasing the availability of services for their legitimate users, by exhausting network or server resources. It is difficult to differentiate attack traffic from legitimate traffic as the attack can come from distributed nodes that additionally might spoof their IP addresses. Traditional DoS mitigation solutions fail to defend all kinds of DoS attacks and huge DoS attacks might exceed the processing capacity of routers and firewalls easily. The advent of Software-defined Networking (SDN) and Network Function Virtualization (NFV) has brought a new perspective for network defense. Key features of such technologies like global network view and flexibly positionable security functionality can be used for mitigating DDoS attacks. In this paper, we propose a collaborative DDoS attack mitigation scheme that uses SDN and NFV. We adopt a machine learning algorithm from related work to derive accurate patterns describing DDoS attacks. Our experimental results indicate that our framework is able to differentiate attack and legitimate traffic with high accuracy and in near-realtime. Furthermore, the derived patterns can be used to create OpenFlow (OF) or Firewall rules that can be pushed back into the direction of the attack origin for more efficient and distributed filtering.
2021-08-11
Abdalla, Peshraw Ahmed, Varol, Cihan.  2020.  Testing IoT Security: The Case Study of an IP Camera. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—5.
While the Internet of Things (IoT) applications and devices expanded rapidly, security and privacy of the IoT devices emerged as a major problem. Current studies reveal that there are significant weaknesses detected in several types of IoT devices moreover in several situations there are no security mechanisms to protect these devices. The IoT devices' users utilize the internet for the purpose of control and connect their machines. IoT application utilization has risen exponentially over time and our sensitive data is captured by IoT devices continuously, unknowingly or knowingly. The motivation behind this paper was the vulnerabilities that exist at the IP cameras. In this study, we undertake a more extensive investigation of IP cameras' vulnerabilities and demonstrate their effect on users' security and privacy through the use of the Kali Linux penetration testing platform and its tools. For this purpose, the paper performs a hands-on test on an IP camera with the name (“Intelligent Onvif YY HD”) to analyzes the security elements of this device. The results of this paper show that IP cameras have several security lacks and weaknesses which these flaws have multiple security impacts on users.
2021-04-09
Mir, N., Khan, M. A. U..  2020.  Copyright Protection for Online Text Information : Using Watermarking and Cryptography. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1—4.
Information and security are interdependent elements. Information security has evolved to be a matter of global interest and to achieve this; it requires tools, policies and assurance of technologies against any relevant security risks. Internet influx while providing a flexible means of sharing the online information economically has rapidly attracted countless writers. Text being an important constituent of online information sharing, creates a huge demand of intellectual copyright protection of text and web itself. Various visible watermarking techniques have been studied for text documents but few for web-based text. In this paper, web page watermarking and cryptography for online content copyrights protection is proposed utilizing the semantic and syntactic rules using HTML (Hypertext Markup Language) and is tested for English and Arabic languages.
2021-04-08
Yang, Z., Sun, Q., Zhang, Y., Zhu, L., Ji, W..  2020.  Inference of Suspicious Co-Visitation and Co-Rating Behaviors and Abnormality Forensics for Recommender Systems. IEEE Transactions on Information Forensics and Security. 15:2766—2781.
The pervasiveness of personalized collaborative recommender systems has shown the powerful capability in a wide range of E-commerce services such as Amazon, TripAdvisor, Yelp, etc. However, fundamental vulnerabilities of collaborative recommender systems leave space for malicious users to affect the recommendation results as the attackers desire. A vast majority of existing detection methods assume certain properties of malicious attacks are given in advance. In reality, improving the detection performance is usually constrained due to the challenging issues: (a) various types of malicious attacks coexist, (b) limited representations of malicious attack behaviors, and (c) practical evidences for exploring and spotting anomalies on real-world data are scarce. In this paper, we investigate a unified detection framework in an eye for an eye manner without being bothered by the details of the attacks. Firstly, co-visitation and co-rating graphs are constructed using association rules. Then, attribute representations of nodes are empirically developed from the perspectives of linkage pattern, structure-based property and inherent association of nodes. Finally, both attribute information and connective coherence of graph are combined in order to infer suspicious nodes. Extensive experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed detection approach compared with competing benchmarks. Additionally, abnormality forensics metrics including distribution of rating intention, time aggregation of suspicious ratings, degree distributions before as well as after removing suspicious nodes and time series analysis of historical ratings, are provided so as to discover interesting findings such as suspicious nodes (items or ratings) on real-world data.
2021-05-05
Cano M, Jeimy J..  2020.  Sandbox: Revindicate failure as the foundation of learning. 2020 IEEE World Conference on Engineering Education (EDUNINE). :1—6.

In an increasingly asymmetric context of both instability and permanent innovation, organizations demand new capacities and learning patterns. In this sense, supervisors have adopted the metaphor of the "sandbox" as a strategy that allows their regulated parties to experiment and test new proposals in order to study them and adjust to the established compliance frameworks. Therefore, the concept of the "sandbox" is of educational interest as a way to revindicate failure as a right in the learning process, allowing students to think, experiment, ask questions and propose ideas outside the known theories, and thus overcome the mechanistic formation rooted in many of the higher education institutions. Consequently, this article proposes the application of this concept for educational institutions as a way of resignifying what students have learned.

2021-01-11
Wu, N., Farokhi, F., Smith, D., Kaafar, M. A..  2020.  The Value of Collaboration in Convex Machine Learning with Differential Privacy. 2020 IEEE Symposium on Security and Privacy (SP). :304–317.
In this paper, we apply machine learning to distributed private data owned by multiple data owners, entities with access to non-overlapping training datasets. We use noisy, differentially-private gradients to minimize the fitness cost of the machine learning model using stochastic gradient descent. We quantify the quality of the trained model, using the fitness cost, as a function of privacy budget and size of the distributed datasets to capture the trade-off between privacy and utility in machine learning. This way, we can predict the outcome of collaboration among privacy-aware data owners prior to executing potentially computationally-expensive machine learning algorithms. Particularly, we show that the difference between the fitness of the trained machine learning model using differentially-private gradient queries and the fitness of the trained machine model in the absence of any privacy concerns is inversely proportional to the size of the training datasets squared and the privacy budget squared. We successfully validate the performance prediction with the actual performance of the proposed privacy-aware learning algorithms, applied to: financial datasets for determining interest rates of loans using regression; and detecting credit card frauds using support vector machines.
2021-04-09
Fourastier, Y., Baron, C., Thomas, C., Esteban, P..  2020.  Assurance levels for decision making in autonomous intelligent systems and their safety. 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT). :475—483.
The autonomy of intelligent systems and their safety rely on their ability for local decision making based on collected environmental information. This is even more for cyber-physical systems running safety critical activities. While this intelligence is partial and fragmented, and cognitive techniques are of limited maturity, the decision function must produce results whose validity and scope must be weighted in light of the underlying assumptions, unavoidable uncertainty and hypothetical safety limitation. Besides the cognitive techniques dependability, it is about the assurance level of the decision self-making. Beyond the pure decision-making capabilities of the autonomous intelligent system, we need techniques that guarantee the system assurance required for the intended use. Security mechanisms for cognitive systems may be consequently tightly intricated. We propose a trustworthiness module which is part of the system and its resulting safety. In this paper, we briefly review the state of the art regarding the dependability of cognitive techniques, the assurance level definition in this context, and related engineering practices. We elaborate regarding the design of autonomous intelligent systems safety, then we discuss its security design and approaches for the mitigation of safety violations by the cognitive functions.
2021-05-26
Zhengbo, Chen, Xiu, Liu, Yafei, Xing, Miao, Hu, Xiaoming, Ju.  2020.  Markov Encrypted Data Prefetching Model Based On Attribute Classification. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :54—59.

In order to improve the buffering performance of the data encrypted by CP-ABE (ciphertext policy attribute based encryption), this paper proposed a Markov prefetching model based on attribute classification. The prefetching model combines the access strategy of CP-ABE encrypted file, establishes the user relationship network according to the attribute value of the user, classifies the user by the modularity-based community partitioning algorithm, and establishes a Markov prefetching model based on attribute classification. In comparison with the traditional Markov prefetching model and the classification-based Markov prefetching model, the attribute-based Markov prefetching model is proposed in this paper has higher prefetch accuracy and coverage.

2021-05-05
Elvira, Clément, Herzet, Cédric.  2020.  Short and Squeezed: Accelerating the Computation of Antisparse Representations with Safe Squeezing. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :5615—5619.
Antisparse coding aims at spreading the information uniformly over representation coefficients and can be expressed as the solution of an ℓ∞-norm regularized problem. In this paper, we propose a new methodology, coined "safe squeezing", accelerating the computation of antisparse representations. The idea consists in identifying saturated entries of the solution via simple tests and compacting their contribution to achieve some form of dimensionality reduction. Numerical experiments show that the proposed approach leads to significant computational gain.
2021-08-11
Karmakar, Rajit, Chattopadhyay, Santanu.  2020.  Hardware IP Protection Using Logic Encryption and Watermarking. 2020 IEEE International Test Conference (ITC). :1—10.
Logic encryption is a popular Design-for-Security(DfS) solution that offers protection against the potential adversaries in the third-party fab labs and end-users. However, over the years, logic encryption has been a target of several attacks, especially Boolean satisfiability attacks. This paper exploits SAT attack's inability of deobfuscating sequential circuits as a defense against it. We propose several strategies capable of preventing the SAT attack by obfuscating the scan-based Design-for-Testability (DfT) infrastructure. Unlike the existing SAT-resilient schemes, the proposed techniques do not suffer from poor output corruption for wrong keys. This paper also offers various probable solutions for inserting the key-gates into the circuit that ensures protection against numerous other attacks, which exploit weak key-gate locations. Along with several gate-level obfuscation strategies, this paper also presents a Cellular Automata (CA) guided FSM obfuscation strategy to offer protection at a higher abstraction level, that is, RTL-level. For all the proposed schemes, rigorous security analysis against various attacks evaluates their strengths and limitations. Testability analysis also ensures that none of the proposed techniques hamper the basic testing properties of the ICs. We also present a CA-based FSM watermarking strategy that helps to detect potential theft of the designer's IP by any adversary.
2021-11-30
Shateri, Mohammadhadi, Messina, Francisco, Piantanida, Pablo, Labeau, Fabrice.  2020.  On the Impact of Side Information on Smart Meter Privacy-Preserving Methods. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–6.
Smart meters (SMs) can pose privacy threats for consumers, an issue that has received significant attention in recent years. This paper studies the impact of Side Information (SI) on the performance of possible attacks to real-time privacy-preserving algorithms for SMs. In particular, we consider a deep adversarial learning framework, in which the desired releaser, which is a Recurrent Neural Network (RNN), is trained by fighting against an adversary network until convergence. To define the objective for training, two different approaches are considered: the Causal Adversarial Learning (CAL) and the Directed Information (DI)-based learning. The main difference between these approaches relies on how the privacy term is measured during the training process. The releaser in the CAL method, disposing of supervision from the actual values of the private variables and feedback from the adversary performance, tries to minimize the adversary log-likelihood. On the other hand, the releaser in the DI approach completely relies on the feedback received from the adversary and is optimized to maximize its uncertainty. The performance of these two algorithms is evaluated empirically using real-world SMs data, considering an attacker with access to SI (e.g., the day of the week) that tries to infer the occupancy status from the released SMs data. The results show that, although they perform similarly when the attacker does not exploit the SI, in general, the CAL method is less sensitive to the inclusion of SI. However, in both cases, privacy levels are significantly affected, particularly when multiple sources of SI are included.
2021-05-05
Konwar, Kishori M., Kumar, Saptaparni, Tseng, Lewis.  2020.  Semi-Fast Byzantine-tolerant Shared Register without Reliable Broadcast. 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS). :743—753.
Shared register emulations on top of message-passing systems provide an illusion of a simpler shared memory system which can make the task of a system designer easier. Numerous shared register applications have a considerably high read-to-write ratio. Thus, having algorithms that make reads more efficient than writes is a fair trade-off.Typically, such algorithms for reads and writes are asymmetric and sacrifice the stringent consistency condition atomicity, as it is impossible to have fast reads for multi-writer atomicity. Safety is a consistency condition that has has gathered interest from both the systems and theory community as it is weaker than atomicity yet provides strong enough guarantees like "strong consistency" or read-my-write consistency. One requirement that is assumed by many researchers is that of the reliable broadcast (RB) primitive, which ensures the "all or none" property during a broadcast. One drawback is that such a primitive takes 1.5 rounds to complete and requires server-to-server communication.This paper implements an efficient multi-writer multi-reader safe register without using a reliable broadcast primitive. Moreover, we provide fast reads or one-shot reads – our read operations can be completed in one round of client-to-server communication. Of course, this comes with the price of requiring more servers when compared to prior solutions assuming reliable broadcast. However, we show that this increased number of servers is indeed necessary as we prove a tight bound on the number of servers required to implement Byzantine-fault tolerant safe registers in a system without reliable broadcast.We extend our results to data stored using erasure coding as well. We present an emulation of single-writer multi-reader safe register based on MDS codes. The usage of MDS codes reduces storage and communication costs. On the negative side, we also show that to use MDS codes and at the same time achieve one-shot reads, we need even more servers.
2021-05-25
Bakhtiyor, Abdurakhimov, Zarif, Khudoykulov, Orif, Allanov, Ilkhom, Boykuziev.  2020.  Algebraic Cryptanalysis of O'zDSt 1105:2009 Encryption Algorithm. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—7.
In this paper, we examine algebraic attacks on the O'zDSt 1105:2009. We begin with a brief review of the meaning of algebraic cryptanalysis, followed by an algebraic cryptanalysis of O'zDSt 1105:2009. Primarily O'zDSt 1105:2009 encryption algorithm is decomposed and each transformation in it is algebraic described separately. Then input and output of each transformation are expressed with other transformation, encryption key, plaintext and cipher text. Created equations, unknowns on it and degree of unknowns are analyzed, and then overall result is given. Based on experimental results, it is impossible to save all system of equations that describes all transformations in O'zDSt 1105:2009 standard. Because, this task requires 273 bytes for the second round. For this reason, it is advisable to evaluate the parameters of the system of algebraic equations, representing the O'zDSt 1105:2009 standard, theoretically.
Tashev, Komil, Rustamova, Sanobar.  2020.  Analysis of Subject Recognition Algorithms based on Neural Networks. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This article describes the principles of construction, training and use of neural networks. The features of the neural network approach are indicated, as well as the range of tasks for which it is most preferable. Algorithms of functioning, software implementation and results of work of an artificial neural network are presented.
Karimov, Madjit, Tashev, Komil, Rustamova, Sanobar.  2020.  Application of the Aho-Corasick algorithm to create a network intrusion detection system. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—5.
One of the main goals of studying pattern matching techniques is their significant role in real-world applications, such as the intrusion detection systems branch. The purpose of the network attack detection systems NIDS is to protect the infocommunication network from unauthorized access. This article provides an analysis of the exact match and fuzzy matching methods, and discusses a new implementation of the classic Aho-Korasik pattern matching algorithm at the hardware level. The proposed approach to the implementation of the Aho-Korasik algorithm can make it possible to ensure the efficient use of resources, such as memory and energy.
2021-08-11
Garcia-Luna-Aceves, J.J., Ali Albalawi, Abdulazaz.  2020.  Connection-Free Reliable and Efficient Transport Services in the IP Internet. 2020 16th International Conference on Network and Service Management (CNSM). :1—7.
The Internet Transport Protocol (ITP) is introduced to support reliable end-to-end transport services in the IP Internet without the need for end-to-end connections, changes to the Internet routing infrastructure, or modifications to name-resolution services. Results from simulation experiments show that ITP outperforms the Transmission Control Protocol (TCP) and the Named Data Networking (NDN) architecture, which requires replacing the Internet Protocol (IP). In addition, ITP allows transparent content caching while enforcing privacy.
2021-03-16
Li, M., Wang, F., Gupta, S..  2020.  Data-driven fault model development for superconducting logic. 2020 IEEE International Test Conference (ITC). :1—5.

Superconducting technology is being seriously explored for certain applications. We propose a new clean-slate method to derive fault models from large numbers of simulation results. For this technology, our method identifies completely new fault models – overflow, pulse-escape, and pattern-sensitive – in addition to the well-known stuck-at faults.

2021-05-26
Wah Myint, Phyo Wah, Hlaing, Swe Zin, Htoon, Ei Chaw.  2020.  EAC: Encryption Access Control Scheme for Policy Revocation in Cloud Data. 2020 International Conference on Advanced Information Technologies (ICAIT). :182—187.

Since a lot of information is outsourcing into cloud servers, data confidentiality becomes a higher risk to service providers. To assure data security, Ciphertext Policy Attributes-Based Encryption (CP-ABE) is observed for the cloud environment. Because ciphertexts and secret keys are relying on attributes, the revocation issue becomes a challenge for CP-ABE. This paper proposes an encryption access control (EAC) scheme to fulfill policy revocation which covers both attribute and user revocation. When one of the attributes in an access policy is changed by the data owner, the authorized users should be updated immediately because the revoked users who have gained previous access policy can observe the ciphertext. Especially for data owners, four types of updating policy levels are predefined. By classifying those levels, each secret token key is distinctly generated for each level. Consequently, a new secret key is produced by hashing the secret token key. This paper analyzes the execution times of key generation, encryption, and decryption times between non-revocation and policy revocation cases. Performance analysis for policy revocation is also presented in this paper.

2021-05-25
Ahmedova, Oydin, Mardiyev, Ulugbek, Tursunov, Otabek.  2020.  Generation and Distribution Secret Encryption Keys with Parameter. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.
This article describes a new way to generate and distribute secret encryption keys, in which the processes of generating a public key and formicating a secret encryption key are performed in algebra with a parameter, the secrecy of which provides increased durability of the key.
2021-05-05
Kishore, Pushkar, Barisal, Swadhin Kumar, Prasad Mohapatra, Durga.  2020.  JavaScript malware behaviour analysis and detection using sandbox assisted ensemble model. 2020 IEEE REGION 10 CONFERENCE (TENCON). :864—869.

Whenever any internet user visits a website, a scripting language runs in the background known as JavaScript. The embedding of malicious activities within the script poses a great threat to the cyberworld. Attackers take advantage of the dynamic nature of the JavaScript and embed malicious code within the website to download malware and damage the host. JavaScript developers obfuscate the script to keep it shielded from getting detected by the malware detectors. In this paper, we propose a novel technique for analysing and detecting JavaScript using sandbox assisted ensemble model. We extract the payload using malware-jail sandbox to get the real script. Upon getting the extracted script, we analyse it to define the features that are needed for creating the dataset. We compute Pearson's r between every feature for feature extraction. An ensemble model consisting of Sequential Minimal Optimization (SMO), Voted Perceptron and AdaBoost algorithm is used with voting technique to detect malicious JavaScript. Experimental results show that our proposed model can detect obfuscated and de-obfuscated malicious JavaScript with an accuracy of 99.6% and 0.03s detection time. Our model performs better than other state-of-the-art models in terms of accuracy and least training and detection time.

2021-08-11
Indra Basuki, Akbari, Rosiyadi, Didi, Setiawan, Iwan.  2020.  Preserving Network Privacy on Fine-grain Path-tracking Using P4-based SDN. 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). :129—134.
Path-tracking is essential to provide complete information regarding network breach incidents. It records the direction of the attack and its source of origin thus giving the network manager proper information for the next responses. Nevertheless, the existing path-tracking implementations expose the network topology and routing configurations. In this paper, we propose a privacy-aware path-tracking which mystifies network configurations using in-packet bloom filter. We apply our method by using P4 switch to supports a fine-grain (per-packet) path-tracking with dynamic adaptability via in-switch bloom filter computation. We use a hybrid scheme which consists of a destination-based logging and a path finger print-based marking to minimize the redundant path inferring caused by the bloom filter's false positive. For evaluation, we emulate the network using Mininet and BMv2 software switch. We deploy a source routing mechanism to run the evaluations using a limited testbed machine implementing Rocketfuel topology. By using the hybrid marking and logging technique, we can reduce the redundant path to zero percent, ensuring no-collision in the path-inferring. Based on the experiments, it has a lower space efficiency (56 bit) compared with the bloom filter-only solution (128 bit). Our proposed method guarantees that the recorded path remains secret unless the secret keys of every switch are known.
2021-09-17
Christie V, Samuel H., Smirnova, Daria, Chopra, Amit K., Singh, Munindar P..  2020.  Protocols Over Things: A Decentralized Programming Model for the Internet of Things. 53:60–68.
Current programming models for developing Internet of Things (IoT) applications are logically centralized and ill-suited for most IoT applications. We contribute Protocols over Things, a decentralized programming model that represents an IoT application via a protocol between the parties involved and provides improved performance over network-level delivery guarantees.
2021-04-09
Bhattacharya, M. P., Zavarsky, P., Butakov, S..  2020.  Enhancing the Security and Privacy of Self-Sovereign Identities on Hyperledger Indy Blockchain. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—7.
Self-sovereign identities provide user autonomy and immutability to individual identities and full control to their identity owners. The immutability and control are possible by implementing identities in a decentralized manner on blockchains that are specially designed for identity operations such as Hyperledger Indy. As with any type of identity, self-sovereign identities too deal with Personally Identifiable Information (PII) of the identity holders and comes with the usual risks of privacy and security. This study examined certain scenarios of personal data disclosure via credential exchanges between such identities and risks of man-in-the-middle attacks in the blockchain based identity system Hyperledger Indy. On the basis of the findings, the paper proposes the following enhancements: 1) A novel attribute sensitivity score model for self-sovereign identity agents to ascertain the sensitivity of attributes shared in credential exchanges 2) A method of mitigating man-in-the-middle attacks between peer self-sovereign identities and 3) A novel quantitative model for determining a credential issuer's reputation based on the number of issued credentials in a window period, which is then utilized to calculate an overall confidence level score for the issuer.
2021-05-05
Đuranec, A., Gruičić, S., Žagar, M..  2020.  Forensic analysis of Windows 10 Sandbox. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1224—1229.

With each Windows operating system Microsoft introduces new features to its users. Newly added features present a challenge to digital forensics examiners as they are not analyzed or tested enough. One of the latest features, introduced in Windows 10 version 1909 is Windows Sandbox; a lightweight, temporary, environment for running untrusted applications. Because of the temporary nature of the Sandbox and insufficient documentation, digital forensic examiners are facing new challenges when examining this newly added feature which can be used to hide different illegal activities. Throughout this paper, the focus will be on analyzing different Windows artifacts and event logs, with various tools, left behind as a result of the user interaction with the Sandbox feature on a clear virtual environment. Additionally, the setup of testing environment will be explained, the results of testing and interpretation of the findings will be presented, as well as open-source tools used for the analysis.