Biblio
The Internet of Things technology has been used in a wide range of fields, ranging from industrial applications to individual lives. As a result, a massive amount of sensitive data is generated and transmitted by IoT devices. Those data may be accessed by a large number of complex users. Therefore, it is necessary to adopt an encryption scheme with access control to achieve more flexible and secure access to sensitive data. The Ciphertext Policy Attribute-Based Encryption (CP-ABE) can achieve access control while encrypting data can match the requirements mentioned above. However, the long ciphertext and the slow decryption operation makes it difficult to be used in most IoT devices which have limited memory size and computing capability. This paper proposes a modified CP-ABE scheme, which can implement the full security (adaptive security) under the access structure of AND gate. Moreover, the decryption overhead and the length of ciphertext are constant. Finally, the analysis and experiments prove the feasibility of our scheme.
In an increasingly asymmetric context of both instability and permanent innovation, organizations demand new capacities and learning patterns. In this sense, supervisors have adopted the metaphor of the "sandbox" as a strategy that allows their regulated parties to experiment and test new proposals in order to study them and adjust to the established compliance frameworks. Therefore, the concept of the "sandbox" is of educational interest as a way to revindicate failure as a right in the learning process, allowing students to think, experiment, ask questions and propose ideas outside the known theories, and thus overcome the mechanistic formation rooted in many of the higher education institutions. Consequently, this article proposes the application of this concept for educational institutions as a way of resignifying what students have learned.
In order to improve the buffering performance of the data encrypted by CP-ABE (ciphertext policy attribute based encryption), this paper proposed a Markov prefetching model based on attribute classification. The prefetching model combines the access strategy of CP-ABE encrypted file, establishes the user relationship network according to the attribute value of the user, classifies the user by the modularity-based community partitioning algorithm, and establishes a Markov prefetching model based on attribute classification. In comparison with the traditional Markov prefetching model and the classification-based Markov prefetching model, the attribute-based Markov prefetching model is proposed in this paper has higher prefetch accuracy and coverage.
Superconducting technology is being seriously explored for certain applications. We propose a new clean-slate method to derive fault models from large numbers of simulation results. For this technology, our method identifies completely new fault models – overflow, pulse-escape, and pattern-sensitive – in addition to the well-known stuck-at faults.
Since a lot of information is outsourcing into cloud servers, data confidentiality becomes a higher risk to service providers. To assure data security, Ciphertext Policy Attributes-Based Encryption (CP-ABE) is observed for the cloud environment. Because ciphertexts and secret keys are relying on attributes, the revocation issue becomes a challenge for CP-ABE. This paper proposes an encryption access control (EAC) scheme to fulfill policy revocation which covers both attribute and user revocation. When one of the attributes in an access policy is changed by the data owner, the authorized users should be updated immediately because the revoked users who have gained previous access policy can observe the ciphertext. Especially for data owners, four types of updating policy levels are predefined. By classifying those levels, each secret token key is distinctly generated for each level. Consequently, a new secret key is produced by hashing the secret token key. This paper analyzes the execution times of key generation, encryption, and decryption times between non-revocation and policy revocation cases. Performance analysis for policy revocation is also presented in this paper.
Whenever any internet user visits a website, a scripting language runs in the background known as JavaScript. The embedding of malicious activities within the script poses a great threat to the cyberworld. Attackers take advantage of the dynamic nature of the JavaScript and embed malicious code within the website to download malware and damage the host. JavaScript developers obfuscate the script to keep it shielded from getting detected by the malware detectors. In this paper, we propose a novel technique for analysing and detecting JavaScript using sandbox assisted ensemble model. We extract the payload using malware-jail sandbox to get the real script. Upon getting the extracted script, we analyse it to define the features that are needed for creating the dataset. We compute Pearson's r between every feature for feature extraction. An ensemble model consisting of Sequential Minimal Optimization (SMO), Voted Perceptron and AdaBoost algorithm is used with voting technique to detect malicious JavaScript. Experimental results show that our proposed model can detect obfuscated and de-obfuscated malicious JavaScript with an accuracy of 99.6% and 0.03s detection time. Our model performs better than other state-of-the-art models in terms of accuracy and least training and detection time.
With each Windows operating system Microsoft introduces new features to its users. Newly added features present a challenge to digital forensics examiners as they are not analyzed or tested enough. One of the latest features, introduced in Windows 10 version 1909 is Windows Sandbox; a lightweight, temporary, environment for running untrusted applications. Because of the temporary nature of the Sandbox and insufficient documentation, digital forensic examiners are facing new challenges when examining this newly added feature which can be used to hide different illegal activities. Throughout this paper, the focus will be on analyzing different Windows artifacts and event logs, with various tools, left behind as a result of the user interaction with the Sandbox feature on a clear virtual environment. Additionally, the setup of testing environment will be explained, the results of testing and interpretation of the findings will be presented, as well as open-source tools used for the analysis.