Biblio

Found 1162 results

Filters: Keyword is Collaboration  [Clear All Filters]
2023-09-08
Shi, Kun, Chen, Songsong, Li, Dezhi, Tian, Ke, Feng, Meiling.  2022.  Analysis of the Optimized KNN Algorithm for the Data Security of DR Service. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1634–1637.
The data of large-scale distributed demand-side iot devices are gradually migrated to the cloud. This cloud deployment mode makes it convenient for IoT devices to participate in the interaction between supply and demand, and at the same time exposes various vulnerabilities of IoT devices to the Internet, which can be easily accessed and manipulated by hackers to launch large-scale DDoS attacks. As an easy-to-understand supervised learning classification algorithm, KNN can obtain more accurate classification results without too many adjustment parameters, and has achieved many research achievements in the field of DDoS detection. However, in the face of high-dimensional data, this method has high operation cost, high cost and not practical. Aiming at this disadvantage, this chapter explores the potential of classical KNN algorithm in data storage structure, K-nearest neighbor search and hyperparameter optimization, and proposes an improved KNN algorithm for DDoS attack detection of demand-side IoT devices.
2023-05-19
Yarava, Rokesh Kumar, Rao, G.Rama Chandra, Garapati, Yugandhar, Babu, G.Charles, Prasad, Srisailapu D Vara.  2022.  Analysis on the Development of Cloud Security using Privacy Attribute Data Sharing. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). :1—5.
The data sharing is a helpful and financial assistance provided by CC. Information substance security also rises out of it since the information is moved to some cloud workers. To ensure the sensitive and important data; different procedures are utilized to improve access manage on collective information. Here strategies, Cipher text-policyattribute based encryption (CP-ABE) might create it very helpful and safe. The conventionalCP-ABE concentrates on information privacy only; whereas client's personal security protection is a significant problem as of now. CP-ABE byhidden access (HA) strategy makes sure information privacy and ensures that client's protection isn't exposed also. Nevertheless, the vast majority of the current plans are ineffectivein correspondence overhead and calculation cost. In addition, the vast majority of thismechanism takes no thought regardingabilityauthenticationor issue of security spillescapein abilityverificationstage. To handle the issues referenced over, a security protectsCP-ABE methodby proficient influenceauthenticationis presented in this manuscript. Furthermore, its privacy keys accomplish consistent size. In the meantime, the suggestedplan accomplishes the specific safetyin decisional n-BDHE issue and decisional direct presumption. The computational outcomes affirm the benefits of introduced method.
2023-04-28
Iqbal, Sarfraz.  2022.  Analyzing Initial Design Theory Components for Developing Information Security Laboratories. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :36–40.
Online information security labs intended for training and facilitating hands-on learning for distance students at master’s level are not easy to develop and administer. This research focuses on analyzing the results of a DSR project for design, development, and implementation of an InfoSec lab. This research work contributes to the existing research by putting forth an initial outline of a generalized model for design theory for InfoSec labs aimed at hands-on education of students in the field of information security. The anatomy of design theory framework is used to analyze the necessary components of the anticipated design theory for InfoSec labs in future.
2023-02-17
Aartsen, Max, Banga, Kanta, Talko, Konrad, Touw, Dustin, Wisman, Bertus, Meïnsma, Daniel, Björkqvist, Mathias.  2022.  Analyzing Interoperability and Security Overhead of ROS2 DDS Middleware. 2022 30th Mediterranean Conference on Control and Automation (MED). :976–981.
Robot Operating System 2 (ROS2) is the latest release of a framework for enabling robot applications. Data Distribution Service (DDS) middleware is used for communication between nodes in a ROS2 cluster. The DDS middleware provides a distributed discovery system, message definitions and serialization, and security. In ROS2, the DDS middleware is accessed through an abstraction layer, making it easy to switch from one implementation to another. The existing middleware implementations differ in a number of ways, e.g., in how they are supported in ROS2, in their support for the security features, their ease of use, their performance, and their interoperability. In this work, the focus is on the ease of use, interoperability, and security features aspects of ROS2 DDS middleware. We compare the ease of installation and ease of use of three different DDS middleware, and test the interoperability of different middleware combinations in simple deployment scenarios. We highlight the difference that enabling the security option makes to interoperability, and conduct performance experiments that show the effect that turning on security has on the communication performance. Our results provide guidelines for choosing and deploying DDS middleware on a ROS2 cluster.
ISSN: 2473-3504
2023-04-14
Qian, Jun, Gan, Zijie, Zhang, Jie, Bhunia, Suman.  2022.  Analyzing SocialArks Data Leak - A Brute Force Web Login Attack. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :21–27.
In this work, we discuss data breaches based on the “2012 SocialArks data breach” case study. Data leakage refers to the security violations of unauthorized individuals copying, transmitting, viewing, stealing, or using sensitive, protected, or confidential data. Data leakage is becoming more and more serious, for those traditional information security protection methods like anti-virus software, intrusion detection, and firewalls have been becoming more and more challenging to deal with independently. Nevertheless, fortunately, new IT technologies are rapidly changing and challenging traditional security laws and provide new opportunities to develop the information security market. The SocialArks data breach was caused by a misconfiguration of ElasticSearch Database owned by SocialArks, owned by “Tencent.” The attack methodology is classic, and five common Elasticsearch mistakes discussed the possibilities of those leakages. The defense solution focuses on how to optimize the Elasticsearch server. Furthermore, the ElasticSearch database’s open-source identity also causes many ethical problems, which means that anyone can download and install it for free, and they can install it almost anywhere. Some companies download it and install it on their internal servers, while others download and install it in the cloud (on any provider they want). There are also cloud service companies that provide hosted versions of Elasticsearch, which means they host and manage Elasticsearch clusters for their customers, such as Company Tencent.
2023-02-17
Ye, Kai Zhen.  2022.  Application and Parallel Sandbox Testing Architecture for Network Security Isolation based on Cloud Desktop. 2022 International Conference on Inventive Computation Technologies (ICICT). :879–882.
Network security isolation technology is an important means to protect the internal information security of enterprises. Generally, isolation is achieved through traditional network devices, such as firewalls and gatekeepers. However, the security rules are relatively rigid and cannot better meet the flexible and changeable business needs. Through the double sandbox structure created for each user, each user in the virtual machine is isolated from each other and security is ensured. By creating a virtual disk in a virtual machine as a user storage sandbox, and encrypting the read and write of the disk, the shortcomings of traditional network isolation methods are discussed, and the application of cloud desktop network isolation technology based on VMwarer technology in universities is expounded.
ISSN: 2767-7788
2023-04-14
Kumar, Gaurav, Riaz, Anjum, Prasad, Yamuna, Ahlawat, Satyadev.  2022.  On Attacking IJTAG Architecture based on Locking SIB with Security LFSR. 2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–6.
In recent decennium, hardware security has gained a lot of attention due to different types of attacks being launched, such as IP theft, reverse engineering, counterfeiting, etc. The critical testing infrastructure incorporated into ICs is very popular among attackers to mount side-channel attacks. The IEEE standard 1687 (IJTAG) is one such testing infrastructure that is the focus of attackers these days. To secure access to the IJTAG network, various techniques based on Locking SIB (LSIB) have been proposed. One such very effective technique makes use of Security Linear Feedback Shift Register (SLFSR) along with LSIB. The SLFSR obfuscates the scan chain information from the attacker and hence makes the brute-force attack against LSIB ineffective.In this work, it is shown that the SLFSR based Locking SIB is vulnerable to side-channel attacks. A power analysis attack along with known-plaintext attack is used to determine the IJTAG network structure. First, the known-plaintext attack is used to retrieve the SLFSR design information. This information is further used along with power analysis attack to determine the exact length of the scan chain which in turn breaks the whole security scheme. Further, a countermeasure is proposed to prevent the aforementioned hybrid attack.
ISSN: 1942-9401
2023-05-19
Wang, Jingyi, Huang, Cheng, Ma, Yiming, Wang, Huiyuan, Peng, Chao, Yu, HouHui.  2022.  BA-CPABE : An auditable Ciphertext-Policy Attribute Based Encryption Based on Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :193—197.
At present, the ciphertext-policy attribute based encryption (CP-ABE) has been widely used in different fields of data sharing such as cross-border paperless trade, digital government and etc. However, there still exist some challenges including single point of failure, key abuse and key unaccountable issues in CP-ABE. To address these problems. We propose an accountable CP-ABE mechanism based on block chain system. First, we establish two authorization agencies MskCA and AttrVN(Attribute verify Network),where the MskCA can realize master key escrow, and the AttrVN manages and validates users' attributes. In this way, our system can avoid the single point of failure and improve the privacy of user attributes and security of keys. Moreover, in order to realize auditability of CP-ABE key parameter transfer, we introduce the did and record parameter transfer process on the block chain. Finally, we theoretically prove the security of our CP-ABE. Through comprehensive comparison, the superiority of CP-ABE is verified. At the same time, our proposed schemes have some properties such as fast decryption and so on.
2023-04-27
Ahmad, Ashar, Saad, Muhammad, Al Ghamdi, Mohammed, Nyang, DaeHun, Mohaisen, David.  2022.  BlockTrail: A Service for Secure and Transparent Blockchain-Driven Audit Trails. IEEE Systems Journal. 16:1367–1378.
Audit trails are critical components in enterprise business applications, typically used for storing, tracking, and auditing data. Entities in the audit trail applications have weak trust boundaries, which expose them to various security risks and attacks. To harden the security and develop secure by design applications, blockchain technology has been recently introduced in the audit trails. Blockchains take a consensus-driven clean slate approach to equip audit trails with secure and transparent data processing, without a trusted intermediary. On a downside, blockchains significantly increase the space-time complexity of the audit trails, leading to high storage costs and low transaction throughput. In this article, we introduce BlockTrail, a novel blockchain architecture that fragments the legacy blockchain systems into layers of codependent hierarchies, thereby reducing the space-time complexity and increasing the throughput. BlockTrail is prototyped on the “practical Byzantine fault tolerance” protocol with a custom-built blockchain. Experiments with BlockTrail show that compared to the conventional schemes, BlockTrail is secure and efficient, with low storage footprint.
Conference Name: IEEE Systems Journal
Rafique, Wajid, Hafid, Abdelhakim Senhaji, Cherkaoui, Soumaya.  2022.  Complementing IoT Services Using Software-Defined Information Centric Networks: A Comprehensive Survey. IEEE Internet of Things Journal. 9:23545–23569.
IoT connects a large number of physical objects with the Internet that capture and exchange real-time information for service provisioning. Traditional network management schemes face challenges to manage vast amounts of network traffic generated by IoT services. Software-defined networking (SDN) and information-centric networking (ICN) are two complementary technologies that could be integrated to solve the challenges of different aspects of IoT service provisioning. ICN offers a clean-slate design to accommodate continuously increasing network traffic by considering content as a network primitive. It provides a novel solution for information propagation and delivery for large-scale IoT services. On the other hand, SDN allocates overall network management responsibilities to a central controller, where network elements act merely as traffic forwarding components. An SDN-enabled network supports ICN without deploying ICN-capable hardware. Therefore, the integration of SDN and ICN provides benefits for large-scale IoT services. This article provides a comprehensive survey on software-defined information-centric Internet of Things (SDIC-IoT) for IoT service provisioning. We present critical enabling technologies of SDIC-IoT, discuss its architecture, and describe its benefits for IoT service provisioning. We elaborate on key IoT service provisioning requirements and discuss how SDIC-IoT supports different aspects of IoT services. We define different taxonomies of SDIC-IoT literature based on various performance parameters. Furthermore, we extensively discuss different use cases, synergies, and advances to realize the SDIC-IoT concept. Finally, we present current challenges and future research directions of IoT service provisioning using SDIC-IoT.
Conference Name: IEEE Internet of Things Journal
2023-05-26
Sergeevich, Basan Alexander, Elena Sergeevna, Basan, Nikolaevna, Ivannikova Tatyana, Sergey Vitalievich, Korchalovsky, Dmitrievna, Mikhailova Vasilisa, Mariya Gennadievna, Shulika.  2022.  The concept of the knowledge base of threats to cyber-physical systems based on the ontological approach. 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). :90—95.
Due to the rapid development of cyber-physical systems, there are more and more security problems. The purpose of this work is to develop the concept of a knowledge base in the field of security of cyber-physical systems based on an ontological approach. To create the concept of a knowledge base, it was necessary to consider the system of a cyber-physical system and highlight its structural parts. As a result, the main concepts of the security of a cyber-physical system were identified and the concept of a knowledge base was drawn up, which in the future will help to analyze potential threats to cyber-physical systems.
2023-04-14
Wang, Bingyu, Sun, Qiuye, Fang, Fang.  2022.  Consensus-based Frequency Control of a Cyber-physical Power System under Two Types of DDoS Attacks. 2022 34th Chinese Control and Decision Conference (CCDC). :1060–1065.
The consensus-based frequency control relying on a communication system is used to restore the frequency deviations introduced by the primary droop control in an islanded AC microgrid, a typical cyber-physical power system(CPPS). This paper firstly studies the performance of the CPPS under two types of Distributed Denial of Service (DDoS ) attacks, finds that the intelligent attacks may cause more damage than the brute force attacks, and analyzes some potential defense strategies of the CPPS from two points of view. Some simulation results are also given to show the performance of both the physical and cyber system of the CPPS under different operation conditions.
ISSN: 1948-9447
2023-02-24
Abdelzaher, Tarek, Bastian, Nathaniel D., Jha, Susmit, Kaplan, Lance, Srivastava, Mani, Veeravalli, Venugopal V..  2022.  Context-aware Collaborative Neuro-Symbolic Inference in IoBTs. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :1053—1058.
IoBTs must feature collaborative, context-aware, multi-modal fusion for real-time, robust decision-making in adversarial environments. The integration of machine learning (ML) models into IoBTs has been successful at solving these problems at a small scale (e.g., AiTR), but state-of-the-art ML models grow exponentially with increasing temporal and spatial scale of modeled phenomena, and can thus become brittle, untrustworthy, and vulnerable when interpreting large-scale tactical edge data. To address this challenge, we need to develop principles and methodologies for uncertainty-quantified neuro-symbolic ML, where learning and inference exploit symbolic knowledge and reasoning, in addition to, multi-modal and multi-vantage sensor data. The approach features integrated neuro-symbolic inference, where symbolic context is used by deep learning, and deep learning models provide atomic concepts for symbolic reasoning. The incorporation of high-level symbolic reasoning improves data efficiency during training and makes inference more robust, interpretable, and resource-efficient. In this paper, we identify the key challenges in developing context-aware collaborative neuro-symbolic inference in IoBTs and review some recent progress in addressing these gaps.
2023-05-19
Li, Jiacong, Lv, Hang, Lei, Bo.  2022.  A Cross-Domain Data Security Sharing Approach for Edge Computing based on CP-ABE. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1—6.
Cloud computing is a unified management and scheduling model of computing resources. To satisfy multiple resource requirements for various application, edge computing has been proposed. One challenge of edge computing is cross-domain data security sharing problem. Ciphertext policy attribute-based encryption (CP-ABE) is an effective way to ensure data security sharing. However, many existing schemes focus on could computing, and do not consider the features of edge computing. In order to address this issue, we propose a cross-domain data security sharing approach for edge computing based on CP-ABE. Besides data user attributes, we also consider access control from edge nodes to user data. Our scheme first calculates public-secret key peer of each edge node based on its attributes, and then uses it to encrypt secret key of data ciphertext to ensure data security. In addition, our scheme can add non-user access control attributes such as time, location, frequency according to the different demands. In this paper we take time as example. Finally, the simulation experiments and analysis exhibit the feasibility and effectiveness of our approach.
Zhang, Lingyun, Chen, Yuling, Qian, Xiaobin.  2022.  Data Confirmation Scheme based on Auditable CP-ABE. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :439—443.
Ensuring data rights, openness and transaction flow is important in today’s digital economy. Few scholars have studied in the area of data confirmation, it is only with the development of blockchain that it has started to be taken seriously. However, blockchain has open and transparent natures, so there exists a certain probability of exposing the privacy of data owners. Therefore, in this paper we propose a new measure of data confirmation based on Ciphertext-Policy Attribute-Base Encryption(CP-ABE). The information with unique identification of the data owner is embedded in the ciphertext of CP-ABE by paillier homomorphic encryption, and the data can have multiple sharers. No one has access to the plaintext during the whole confirmation process, which reduces the risk of source data leakage.
2023-09-08
Shah, Sunil Kumar, Sharma, Raghavendra, Shukla, Neeraj.  2022.  Data Security in IoT Networks using Software-Defined Networking: A Review. 2022 IEEE World Conference on Applied Intelligence and Computing (AIC). :909–913.
Wireless Sensor networks can be composed of smart buildings, smart homes, smart grids, and smart mobility, and they can even interconnect all these fields into a large-scale smart city network. Software-Defined Networking is an ideal technology to realize Internet-of-Things (IoT) Network and WSN network requirements and to efficiently enhance the security of these networks. Software defines Networking (SDN) is used to support IoT and WSN related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. This work is a study of different security mechanisms available in SDN for IoT and WSN network secure communication. This work also formulates the problems when existing methods are implemented with different networks parameters.
2023-04-28
Hu, Yuanyuan, Cao, Xiaolong, Li, Guoqing.  2022.  The Design and Realization of Information Security Technology and Computer Quality System Structure. 2022 International Conference on Artificial Intelligence in Everything (AIE). :460–464.
With the development of computer technology and information security technology, computer networks will increasingly become an important means of information exchange, permeating all areas of social life. Therefore, recognizing the vulnerabilities and potential threats of computer networks as well as various security problems that exist in reality, designing and researching computer quality architecture, and ensuring the security of network information are issues that need to be resolved urgently. The purpose of this article is to study the design and realization of information security technology and computer quality system structure. This article first summarizes the basic theory of information security technology, and then extends the core technology of information security. Combining the current status of computer quality system structure, analyzing the existing problems and deficiencies, and using information security technology to design and research the computer quality system structure on this basis. This article systematically expounds the function module data, interconnection structure and routing selection of the computer quality system structure. And use comparative method, observation method and other research methods to design and research the information security technology and computer quality system structure. Experimental research shows that when the load of the computer quality system structure studied this time is 0 or 100, the data loss rate of different lengths is 0, and the correct rate is 100, which shows extremely high feasibility.
2023-05-26
Coshatt, Stephen J., Li, Qi, Yang, Bowen, Wu, Shushan, Shrivastava, Darpan, Ye, Jin, Song, WenZhan, Zahiri, Feraidoon.  2022.  Design of Cyber-Physical Security Testbed for Multi-Stage Manufacturing System. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :1978—1983.
As cyber-physical systems are becoming more wide spread, it is imperative to secure these systems. In the real world these systems produce large amounts of data. However, it is generally impractical to test security techniques on operational cyber-physical systems. Thus, there exists a need to have realistic systems and data for testing security of cyber-physical systems [1]. This is often done in testbeds and cyber ranges. Most cyber ranges and testbeds focus on traditional network systems and few incorporate cyber-physical components. When they do, the cyber-physical components are often simulated. In the systems that incorporate cyber-physical components, generally only the network data is analyzed for attack detection and diagnosis. While there is some study in using physical signals to detect and diagnosis attacks, this data is not incorporated into current testbeds and cyber ranges. This study surveys currents testbeds and cyber ranges and demonstrates a prototype testbed that includes cyber-physical components and sensor data in addition to traditional cyber data monitoring.
2023-07-21
Manjula, P., Baghavathi Priya, S..  2022.  Detection of Falsified Selfish Node with Optimized Trust Computation Model In Chimp -AODV Based WSN. 2022 International Conference on Electronic Systems and Intelligent Computing (ICESIC). :52—57.
In Wireless Sensor Networks (WSNs), energy and security are two critical concerns that must be addressed. Because of the scarcity of energy, several security measures are restricted. For secure data routing in WSN, it becomes vital to identify insider packet drop attacks. The trust mechanism is an effective strategy for detecting this assault. Each node in this system validates the trustworthiness of its neighbors before transmitting packets, ensuring that only trust-worthy nodes get packets. With such a trust-aware scheme, however, there is a risk of false alarm. This work develops an adaptive trust computation model (TCM)which is implemented in our already proposed Chimp Optimization Algorithm-based Energy-Aware Secure Routing Protocol (COA-EASRP) for WSN. The proposed technique computes the optimal path using the hybrid combination of COA-EASRP and AODV as well as TCM is used to indicate false alarms in detecting selfish nodes. Our Proposed approach provides the series of Simulation outputs carried out based on various parameters
2023-09-01
Shaburov, Andrey S., Alekseev, Vsevolod R..  2022.  Development of a Model for Managing the Openness of an Information System in the Context of Information Security Risks of Critical Information Infrastructure Object. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :431—435.
The problem of information security of critical information infrastructure objects in the conditions of openness is formulated. The concept of information infrastructure openness is analyzed. An approach to assessing the openness of an information system is presented. A set-theoretic model of information resources openness was developed. The formulation of the control problem over the degree of openness with restrictions on risk was carried out. An example of solving the problem of finding the coefficient of openness is presented.
2023-07-21
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.  2022.  Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
2023-04-14
Selvaganesh, M., Naveen Karthi, P., Nitish Kumar, V. A., Prashanna Moorthy, S. R..  2022.  Efficient Brute-force handling methodology using Indexed-Cluster Architecture of Splunk. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :697–701.
A brute force is a Hacking methodology used to decrypt login passwords, keys and credentials. Hacks that exploit vulnerabilities in packages are rare, whereas Brute Force attacks aim to be the simplest, cheapest, and most straightforward approach to access a website. Using Splunk to analyse massive amounts of data could be very beneficial. The application enables to capture, search, and analyse log information in real-time. By analysing logs as well as many different sources of system information, security events can be uncovered. A log file, which details the events that have occurred in the environment of the application and the server on which they run, is a valuable piece of information. Identifying the attacks against these systems is possible by analysing and correlating this information. Massive amounts of ambiguous and amorphous information can be analysed with its superior resolution. The paper includes instructions on setting up a Splunk server and routing information there from multiple sources. Practical search examples and pre-built add-on applications are provided. Splunk is a powerful tool that allows users to explore big data with greater ease. Seizure can be tracked in near real-time and can be searched through logs. A short amount of time can be spent on analysing big data using map-reduce technology. Briefly, it helps to analyse unstructured log data to better understand how the applications operate. With Splunk, client can detect patterns in the data through a powerful query language. It is easy to set up alerts and warnings based on the queries, which will help alert client about an ongoing (suspected) activity and generate a notification in real-time.
2023-09-01
Sayed, Aya Nabil, Hamila, Ridha, Himeur, Yassine, Bensaali, Faycal.  2022.  Employing Information Theoretic Metrics with Data-Driven Occupancy Detection Approaches: A Comparative Analysis. 2022 5th International Conference on Signal Processing and Information Security (ICSPIS). :50—54.
Building occupancy data helps increase energy management systems’ performance, enabling lower energy use while preserving occupant comfort. The focus of this study is employing environmental data (e.g., including but not limited to temperature, humidity, carbon dioxide (CO2), etc.) to infer occupancy information. This will be achieved by exploring the application of information theory metrics with machine learning (ML) approaches to classify occupancy levels for a given dataset. Three datasets and six distinct ML algorithms were used in a comparative study to determine the best strategy for identifying occupancy patterns. It was determined that both k-nearest neighbors (kNN) and random forest (RF) identify occupancy labels with the highest overall level of accuracy, reaching 97.99% and 98.56%, respectively.
2023-08-25
Utomo, Rio Guntur, Yahya, Farashazillah, Almarshad, Fahdah, Wills, Gary B.  2022.  Factors Affecting Information Assurance for Big Data. 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT). :1–5.
Big Data is a concept used in various sectors today, including the government sector in the Smart Government initiative. With a large amount of structured and unstructured data being managed, information assurance becomes important in adopting Big Data. However, so far, no research has focused on information assurance for Big Data. This paper identified information assurance factors for Big Data. This research used the systematic snapshot mapping approach to examine factors relating to information assurance from the literature related to Big Data from 2011 through 2021. The data extraction process in gathering 15 relevant papers. The findings revealed ten factors influencing the information assurance implementation for Big Data, with the security factor becoming the most concentrated factor with 18 sub-factors. The findings are expected to serve as a foundation for adopting information assurance for Big Data to develop an information assurance framework for Smart Government.
2023-07-21
Gao, Kai, Cheng, Xiangyu, Huang, Hao, Li, Xunhao, Yuan, Tingyu, Du, Ronghua.  2022.  False Data Injection Attack Detection in a Platoon of CACC in RSU. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1324—1329.
Intelligent connected vehicle platoon technology can reduce traffic congestion and vehicle fuel. However, attacks on the data transmitted by the platoon are one of the primary challenges encountered by the platoon during its travels. The false data injection (FDI) attack can lead to road congestion and even vehicle collisions, which can impact the platoon. However, the complexity of the cellular - vehicle to everything (C-V2X) environment, the single source of the message and the poor data processing capability of the on board unit (OBU) make the traditional detection methods’ success rate and response time poor. This study proposes a platoon state information fusion method using the communication characteristics of the platoon in C-V2X and proposes a novel platoon intrusion detection model based on this fusion method combined with sequential importance sampling (SIS). The SIS is a measured strategy of Monte Carlo integration sampling. Specifically, the method takes the status information of the platoon members as the predicted value input. It uses the leader vehicle status information as the posterior probability of the observed value to the current moment of the platoon members. The posterior probabilities of the platoon members and the weights of the platoon members at the last moment are used as input to update the weights of the platoon members at the current moment and obtain the desired platoon status information at the present moment. Moreover, it compares the status information of the platoon members with the desired status information to detect attacks on the platoon. Finally, the effectiveness of the method is demonstrated by simulation.