Biblio
The University of Illinois at Urbana Champaign (Illinois), Pacific Northwest National Labs (PNNL), and the University of Southern California Information Sciences Institute (USC-ISI) consortium is working toward providing tools and expertise to enable collaborative research to improve security and resiliency of cyber physical systems. In this extended abstract we discuss the challenges and the solution space. We demonstrate the feasibility of some of the proposed components through a wide-area situational awareness experiment for the power grid across the three sites.
We consider several challenging problems in complex networks (communication, control, social, economic, biological, hybrid) as problems in cooperative multi-agent systems. We describe a general model for cooperative multi-agent systems that involves several interacting dynamic multigraphs and identify three fundamental research challenges underlying these systems from a network science perspective. We show that the framework of constrained coalitional network games captures in a fundamental way the basic tradeoff of benefits vs. cost of collaboration, in multi-agent systems, and demonstrate that it can explain network formation and the emergence or not of collaboration. Multi-metric problems in such networks are analyzed via a novel multiple partially ordered semirings approach. We investigate the interrelationship between the collaboration and communication multigraphs in cooperative swarms and the role of the communication topology, among the collaborating agents, in improving the performance of distributed task execution. Expander graphs emerge as efficient communication topologies for collaborative control. We relate these models and approaches to statistical physics.
Complexity is ever increasing within our information environment and organisations, as interdependent dynamic relationships within sociotechnical systems result in high variety and uncertainty from a lack of information or control. A net-centric approach is a strategy to improve information value, to enable stakeholders to extend their reach to additional data sources, share Situational Awareness (SA), synchronise effort and optimise resource use to deliver maximum (or proportionate) effect in support of goals. This paper takes a systems perspective to understand the dynamics within a net-centric information system. This paper presents the first stages of the Soft Systems Methodology (SSM), to develop a conceptual model of the human activity system and develop a system dynamics model to represent system behaviour, that will inform future research into a net-centric approach with information security. Our model supports the net-centric hypothesis that participation within a information sharing community extends information reach, improves organisation SA allowing proactive action to mitigate vulnerabilities and reduce overall risk within the community. The system dynamics model provides organisations with tools to better understand the value of a net-centric approach, a framework to determine their own maturity and evaluate strategic relationships with collaborative communities.
Specifics of an alias-free digitizer application for compressed digitizing and recording of wideband signals are considered. Signal sampling in this case is performed on the basis of picosecond resolution event timing, the digitizer actually is a subsystem of Event Timer A033-ET and specific events that are detected and then timed are the signal and reference sine-wave crossings. The used approach to development of this subsystem is described and some results of experimental studies are given.
It can get the user's privacy and home energy use information by analyzing the user's electrical load information in smart grid, and this is an area of concern. A rechargeable battery may be used in the home network to protect user's privacy. In this paper, the battery can neither charge nor discharge, and the power of battery is adjustable, at the same time, we model the real user's electrical load information and the battery power information and the recorded electrical power of smart meters which are processed with discrete way. Then we put forward a heuristic algorithm which can make the rate of information leakage less than existing solutions. We use statistical methods to protect user's privacy, the theoretical analysis and the examples show that our solution makes the scene design more reasonable and is more effective than existing solutions to avoid the leakage of the privacy.
With the rapid development of mobile internet, mobile devices are requiring more complex authorization policy to ensure an secure access control on mobile data. However mobiles have limited resources (computing, storage, etc.) and are not suitable to execute complex operations. Cloud computing is an increasingly popular paradigm for accessing powerful computing resources. Intuitively we can solve that problem by moving the complex access control process to the cloud and implement a fine-grained access control relying on the powerful cloud. However the cloud computation may not be trusted, a crucial problem is how to verify the correctness of such computations. In this paper, we proposed a public verifiable cloud access control scheme based on Parno's public verifiable computation protocol. For the first time, we proposed the conception and concrete construction of verifiable cloud access control. Specifically, we firstly design a user private key revocable Key Policy Attribute Based Encryption (KP-ABE) scheme with non-monotonic access structure, which can be combined with the XACML policy perfectly. Secondly we convert the XACML policy into the access structure of KP-ABE. Finally we construct a security provable public verifiable cloud access control scheme based on the KP-ABE scheme we designed.
Privacy has become a critical topic in the engineering of electric systems. This work proposes an approach for smart-grid-specific privacy requirements engineering by extending previous general privacy requirements engineering frameworks. The proposed extension goes one step further by focusing on privacy in the smart grid. An alignment of smart grid privacy requirements, dependability issues and privacy requirements engineering methods is presented. Starting from this alignment a Threat Tree Analysis is performed to obtain a first set of generic, high level privacy requirements. This set is formulated mostly on the data instead of the information level and provides the basis for further project-specific refinement.
In previous multi-authority key-policy attribute-based Encryption (KP-ABE) schemes, either a super power central authority (CA) exists, or multiple attribute authorities (AAs) must collaborate in initializing the system. In addition, those schemes are proved security in the selective model. In this paper, we propose a new fully secure decentralized KP-ABE scheme, where no CA exists and there is no cooperation between any AAs. To become an AA, a participant needs to create and publish its public parameters. All the user's private keys will be linked with his unique global identifier (GID). The proposed scheme supports any monotonic access structure which can be expressed by a linear secret sharing scheme (LSSS). We prove the full security of our scheme in the standard model. Our scheme is also secure against at most F-1 AAs corruption, where F is the number of AAs in the system. The efficiency of our scheme is almost as well as that of the underlying fully secure single-authority KP-ABE system.
Despite the benefits offered by smart grids, energy producers, distributors and consumers are increasingly concerned about possible security and privacy threats. These threats typically manifest themselves at runtime as new usage scenarios arise and vulnerabilities are discovered. Adaptive security and privacy promise to address these threats by increasing awareness and automating prevention, detection and recovery from security and privacy requirements' failures at runtime by re-configuring system controls and perhaps even changing requirements. This paper discusses the need for adaptive security and privacy in smart grids by presenting some motivating scenarios. We then outline some research issues that arise in engineering adaptive security. We particularly scrutinize published reports by NIST on smart grid security and privacy as the basis for our discussions.
A successful Smart Grid system requires purpose-built security architecture which is explicitly designed to protect customer data confidentiality. In addition to the investment on electric power infrastructure for protecting the privacy of Smart Grid-related data, entities need to actively participate in the NIST interoperability framework process; establish policies and oversight structure for the enforcement of cyber security controls of the data through adoption of security best practices, personnel training, cyber vulnerability assessments, and consumer privacy audits.
Protecting energy consumers's data and privacy is a key factor for the further adoption and diffusion of smart grid technologies and applications. However, current smart grid initiatives and implementations around the globe tend to either focus on the need for technical security to the detriment of privacy or consider privacy as a feature to add after system design. This paper aims to contribute towards filling the gap between this fact and the accepted wisdom that privacy concerns should be addressed as early as possible (preferably when modeling system's requirements). We present a methodological framework for tackling privacy concerns throughout all phases of the smart grid system development process. We describe methods and guiding principles to help smart grid engineers to elicit and analyze privacy threats and requirements from the outset of the system development, and derive the best suitable countermeasures, i.e. privacy enhancing technologies (PETs), accordingly. The paper also provides a summary of modern PETs, and discusses their context of use and contributions with respect to the underlying privacy engineering challenges and the smart grid setting being considered.
Motivated by the September 11 attacks, we are addressing the problem of policy analysis of supply-chain security. Considering the potential economic and operational impacts of inspection together with the inherent difficulty of assigning a reasonable cost to an inspection failure call for a policy analysis methodology in which stakeholders can understand the trade-offs between the diverse and potentially conflicting objectives. To obtain this information, we used a simulation-based methodology to characterize the set of Pareto optimal solutions with respect to the multiple objectives represented in the decision problem. Our methodology relies on simulation and the response surface method (RSM) to model the relationships between inspection policies and relevant stakeholder objectives in order to construct a set of Pareto optimal solutions. The approach is illustrated with an application to a real-world supply chain.