Biblio

Found 1162 results

Filters: Keyword is Collaboration  [Clear All Filters]
2020-04-03
Belim, S.V., S.Yu, Belim.  2019.  Implementation of Discretionary Security Policy in the Distributed Systems Based on the Secret Sharing Scheme. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—4.

In this article the combination of secret sharing schemes and the requirement of discretionary security policy is considered. Secret sharing schemes of Shamir and Blakley are investigated. Conditions for parameters of schemes the providing forbidden information channels are received. Ways for concealment of the forbidden channels are suggested. Three modifications of the Shamir's scheme and two modifications of the Blakley's scheme are suggested. Transition from polynoms to exponential functions for formation the parts of a secret is carried out. The problem of masking the presence of the forbidden information channels is solved. Several approaches with the complete and partial concealment are suggested.

2020-11-20
Roy, D. D., Shin, D..  2019.  Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :576—581.
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].
2020-07-24
Sethia, Divyashikha, Shakya, Anadi, Aggarwal, Ritik, Bhayana, Saksham.  2019.  Constant Size CP-ABE with Scalable Revocation for Resource-Constrained IoT Devices. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0951—0957.

Users can directly access and share information from portable devices such as a smartphone or an Internet of Things (IoT) device. However, to prevent them from becoming victims to launch cyber attacks, they must allow selective sharing based on roles of the users such as with the Ciphertext-Policy Attribute Encryption (CP-ABE) scheme. However, to match the resource constraints, the scheme must be efficient for storage. It must also protect the device from malicious users as well as allow uninterrupted access to valid users. This paper presents the CCA secure PROxy-based Scalable Revocation for Constant Cipher-text (C-PROSRCC) scheme, which provides scalable revocation for a constant ciphertext length CP-ABE scheme. The scheme has a constant number of pairings and computations. It can also revoke any number of users and does not require re-encryption or redistribution of keys. We have successfully implemented the C-PROSRCC scheme. The qualitative and quantitative comparison with related schemes indicates that C-PROSRCC performs better with acceptable overheads. C-PROSRCC is Chosen Ciphertext Attack (CCA) secure. We also present a case study to demonstrate the use of C-PROSRCC for mobile-based selective sharing of a family car.

2020-11-02
Saksupapchon, Punyapat, Willoughby, Kelvin W..  2019.  Contextual Factors Affecting Decisions About Intellectual Property Licensing Provisions in Collaboration Agreements for Open Innovation Projects of Complex Technological Organizations. 2019 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE). :1—2.

Firms collaborate with partners in research and development (R&D) of new technologies for many reasons such as to access complementary knowledge, know-how or skills, to seek new opportunities outside their traditional technology domain, to sustain their continuous flows of innovation, to reduce time to market, or to share risks and costs [1]. The adoption of collaborative research agreements (CRAs) or collaboration agreements (CAs) is rising rapidly as firms attempt to access innovation from various types of organizations to enhance their traditional in-house innovation [2], [3]. To achieve the objectives of their collaborations, firms need to share knowledge and jointly develop new knowledge. As more firms adopt open collaborative innovation strategies, intellectual property (IP) management has inevitably become important because clear and fair contractual IP terms and conditions such as IP ownership allocation, licensing arrangements and compensation for IP access are required for each collaborative project [4], [5]. Moreover, the firms need to adjust their IP management strategies to fit the unique characteristics and circumstances of each particular project [5].

2020-12-11
Correia, A., Fonseca, B., Paredes, H., Schneider, D., Jameel, S..  2019.  Development of a Crowd-Powered System Architecture for Knowledge Discovery in Scientific Domains. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :1372—1377.
A substantial amount of work is often overlooked due to the exponential rate of growth in global scientific output across all disciplines. Current approaches for addressing this issue are usually limited in scope and often restrict the possibility of obtaining multidisciplinary views in practice. To tackle this problem, researchers can now leverage an ecosystem of citizens, volunteers and crowd workers to perform complex tasks that are either difficult for humans and machines to solve alone. Motivated by the idea that human crowds and computer algorithms have complementary strengths, we present an approach where the machine will learn from crowd behavior in an iterative way. This approach is embodied in the architecture of SciCrowd, a crowd-powered human-machine hybrid system designed to improve the analysis and processing of large amounts of publication records. To validate the proposal's feasibility, a prototype was developed and an initial evaluation was conducted to measure its robustness and reliability. We conclude this paper with a set of implications for design.
2020-07-24
Porwal, Shardha, Mittal, Sangeeta.  2019.  A Flexible Secure Key Delegation Mechanism for CP-ABE with Hidden Access Structure. 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE). :1—6.

Ciphertext Policy Attribute Based Encryption techniques provide fine grained access control to securely share the data in the organizations where access rights of users vary according to their roles. We have noticed that various key delegation mechanisms are provided for CP-ABE schemes but no key delegation mechanism exists for CP-ABE with hidden access policy. In practical, users' identity may be revealed from access policy in the organizations and unlimited further delegations may results in unauthorized data access. For maintaining the users' anonymity, the access structure should be hidden and every user must be restricted for specified further delegations. In this work, we have presented a flexible secure key delegation mechanism for CP-ABE with hidden access structure. The proposed scheme enhances the capability of existing CP-ABE schemes by supporting flexible delegation, attribute revocation and user revocation with negligible enhancement in computational cost.

2020-10-16
Supriyanto, Aji, Diartono, Dwi Agus, Hartono, Budi, Februariyanti, Herny.  2019.  Inclusive Security Models To Building E-Government Trust. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). :1—6.

The low attention to security and privacy causes some problems on data and information that can lead to a lack of public trust in e-Gov service. Security threats are not only included in technical issues but also non-technical issues and therefore, it needs the implementation of inclusive security. The application of inclusive security to e-Gov needs to develop a model involving security and privacy requirements as a trusted security solution. The method used is the elicitation of security and privacy requirements in a security perspective. Identification is carried out on security and privacy properties, then security and privacy relationships are determined. The next step is developing the design of an inclusive security model on e-Gov. The last step is doing an analysis of e-Gov service activities and the role of inclusive security. The results of this study identified security and privacy requirements for building inclusive security. Identification of security requirements involves properties such as confidentiality (C), integrity (I), availability (A). Meanwhile, privacy requirement involves authentication (Au), authorization (Az), and Non-repudiation (Nr) properties. Furthermore, an inclusive security design model on e-Gov requires trust of internet (ToI) and trust of government (ToG) as an e-Gov service provider. Access control is needed to provide solutions to e-Gov service activities.

2020-03-18
Offenberger, Spencer, Herman, Geoffrey L., Peterson, Peter, Sherman, Alan T, Golaszewski, Enis, Scheponik, Travis, Oliva, Linda.  2019.  Initial Validation of the Cybersecurity Concept Inventory: Pilot Testing and Expert Review. 2019 IEEE Frontiers in Education Conference (FIE). :1–9.
We analyze expert review and student performance data to evaluate the validity of the Cybersecurity Concept Inventory (CCI) for assessing student knowledge of core cybersecurity concepts after a first course on the topic. A panel of 12 experts in cybersecurity reviewed the CCI, and 142 students from six different institutions took the CCI as a pilot test. The panel reviewed each item of the CCI and the overwhelming majority rated every item as measuring appropriate cybersecurity knowledge. We administered the CCI to students taking a first cybersecurity course either online or proctored by the course instructor. We applied classical test theory to evaluate the quality of the CCI. This evaluation showed that the CCI is sufficiently reliable for measuring student knowledge of cybersecurity and that the CCI may be too difficult as a whole. We describe the results of the expert review and the pilot test and provide recommendations for the continued improvement of the CCI.
2020-11-20
Prasad, G., Huo, Y., Lampe, L., Leung, V. C. M..  2019.  Machine Learning Based Physical-Layer Intrusion Detection and Location for the Smart Grid. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Security and privacy of smart grid communication data is crucial given the nature of the continuous bidirectional information exchange between the consumer and the utilities. Data security has conventionally been ensured using cryptographic techniques implemented at the upper layers of the network stack. However, it has been shown that security can be further enhanced using physical layer (PHY) methods. To aid and/or complement such PHY and upper layer techniques, in this paper, we propose a PHY design that can detect and locate not only an active intruder but also a passive eavesdropper in the network. Our method can either be used as a stand-alone solution or together with existing techniques to achieve improved smart grid data security. Our machine learning based solution intelligently and automatically detects and locates a possible intruder in the network by reusing power line transmission modems installed in the grid for communication purposes. Simulation results show that our cost-efficient design provides near ideal intruder detection rates and also estimates its location with a high degree of accuracy.
2020-07-24
Wu, Chuxin, Zhang, Peng, Liu, Hongwei, Liu, Yuhong.  2019.  Multi-keyword Ranked Searchable Encryption Supporting CP-ABE Test. 2019 Computing, Communications and IoT Applications (ComComAp). :220—225.

Internet of Things (IoT) and cloud computing are promising technologies that change the way people communicate and live. As the data collected through IoT devices often involve users' private information and the cloud is not completely trusted, users' private data are usually encrypted before being uploaded to cloud for security purposes. Searchable encryption, allowing users to search over the encrypted data, extends data flexibility on the premise of security. In this paper, to achieve the accurate and efficient ciphertext searching, we present an efficient multi-keyword ranked searchable encryption scheme supporting ciphertext-policy attribute-based encryption (CP-ABE) test (MRSET). For efficiency, numeric hierarchy supporting ranked search is introduced to reduce the dimensions of vectors and matrices. For practicality, CP-ABE is improved to support access right test, so that only documents that the user can decrypt are returned. The security analysis shows that our proposed scheme is secure, and the experimental result demonstrates that our scheme is efficient.

2020-03-18
Zhang, Ruipeng, Xu, Chen, Xie, Mengjun.  2019.  Powering Hands-on Cybersecurity Practices with Cloud Computing. 2019 IEEE 27th International Conference on Network Protocols (ICNP). :1–2.
Cybersecurity education and training have gained increasing attention in all sectors due to the prevalence and quick evolution of cyberattacks. A variety of platforms and systems have been proposed and developed to accommodate the growing needs of hands-on cybersecurity practice. However, those systems are either lacking sufficient flexibility (e.g., tied to a specific virtual computing service provider, little customization support) or difficult to scale. In this work, we present a cloud-based platform named EZSetup for hands-on cybersecurity practice at scale and our experience of using it in class. EZSetup is customizable and cloud-agnostic. Users can create labs through an intuitive Web interface and deploy them onto one or multiple clouds. We have used NSF funded Chameleon cloud and our private OpenStack cloud to develop, test and deploy EZSetup. We have developed 14 network and security labs using the tool and included six labs in an undergraduate network security course in spring 2019. Our survey results show that students have very positive feedback on using EZSetup and computing clouds for hands-on cybersecurity practice.
Promyslov, Vitaly, Jharko, Elena, Semenkov, Kirill.  2019.  Principles of Physical and Information Model Integration for Cybersecurity Provision to a Nuclear Power Plant. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–3.
For complex technical objects the research of cybersecurity problems should take into account both physical and information properties of the object. The paper considers a hybrid model that unifies information and physical models and may be used as a tool for countering cyber threats and for cybersecurity risk assessment at the design and operational stage of an object's lifecycle.
2020-02-10
Hoey, Jesse, Sheikhbahaee, Zahra, MacKinnon, Neil J..  2019.  Deliberative and Affective Reasoning: a Bayesian Dual-Process Model. 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW). :388–394.
The presence of artificial agents in human social networks is growing. From chatbots to robots, human experience in the developed world is moving towards a socio-technical system in which agents can be technological or biological, with increasingly blurred distinctions between. Given that emotion is a key element of human interaction, enabling artificial agents with the ability to reason about affect is a key stepping stone towards a future in which technological agents and humans can work together. This paper presents work on building intelligent computational agents that integrate both emotion and cognition. These agents are grounded in the well-established social-psychological Bayesian Affect Control Theory (BayesAct). The core idea of BayesAct is that humans are motivated in their social interactions by affective alignment: they strive for their social experiences to be coherent at a deep, emotional level with their sense of identity and general world views as constructed through culturally shared symbols. This affective alignment creates cohesive bonds between group members, and is instrumental for collaborations to solidify as relational group commitments. BayesAct agents are motivated in their social interactions by a combination of affective alignment and decision theoretic reasoning, trading the two off as a function of the uncertainty or unpredictability of the situation. This paper provides a high-level view of dual process theories and advances BayesAct as a plausible, computationally tractable model based in social-psychological and sociological theory.
2020-01-21
Orellana, Cristian, Villegas, Mónica M., Astudillo, Hernán.  2019.  Mitigating Security Threats through the Use of Security Tactics to Design Secure Cyber-Physical Systems (CPS). Proceedings of the 13th European Conference on Software Architecture - Volume 2. :109–115.
Cyber-Physical Systems (CPS) attract growing interest from architects and attackers, given their potential effect on privacy and safety of ecosystems and users. Architectural tactics have been proposed as a design-time abstraction useful to guide and evaluate systems design decisions that address specific system qualities, but there is little published evidence of how Security Tactics help to mitigate security threats in the context of Cyber-Physical Systems. This article reports the principled derivation of architectural tactics for an actual SCADA-SAP bridge, where security was the key concern; the key inputs were (1) a well-known taxonomies of architectural tactics, and (2) a detailed record of trade-offs among these tactics. The project architects used client-specified quality attributes to identify relevant tactics in the taxonomy, and information on their trade-offs to guide top-level decisions on system global shape. We venture that all architectural tactics taxonomies should be enriched with explicit trade-offs, allowing architects to compare alternative solutions that seem equally good on principle but are not so in practice.
2020-02-10
Ma, Limei, Zhao, Dongmei, Gao, Yijun, Zhao, Chen.  2019.  Research on SQL Injection Attack and Prevention Technology Based on Web. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :176–179.
This SQL injection attack is one of the common means for hackers to attack database. With the development of B/S mode application development, more and more programmers use this mode to write applications. However, due to the uneven level and experience of programmers, a considerable number of programmers do not judge the legitimacy of user input data when writing code, which makes the application security risks. Users can submit a database query code and get some data they want to know according to the results of the program. SQL injection attack belongs to one of the means of database security attack. It can be effectively protected by database security protection technology. This paper introduces the principle of SQL injection, the main form of SQL injection attack, the types of injection attack, and how to prevent SQL injection. Discussed and illustrated with examples.
2020-07-24
Xiang, Guangli, Li, Beilei, Fu, Xiannong, Xia, Mengsen, Ke, Weiyi.  2019.  An Attribute Revocable CP-ABE Scheme. 2019 Seventh International Conference on Advanced Cloud and Big Data (CBD). :198—203.

Ciphertext storage can effectively solve the security problems in cloud storage, among which the ciphertext policy attribute-based encryption (CP-ABE) is more suitable for ciphertext access control in cloud storage environment for it can achieve one-to-many ciphertext sharing. The existing attribute encryption scheme CP-ABE has problems with revocation such as coarse granularity, untimeliness, and low efficiency, which cannot meet the demands of cloud storage. This paper proposes an RCP-ABE scheme that supports real-time revocable fine-grained attributes for the existing attribute revocable scheme, the scheme of this paper adopts the version control technology to realize the instant revocation of the attributes. In the key update mechanism, the subset coverage technology is used to update the key, which reduces the workload of the authority. The experimental analysis shows that RCP-ABE is more efficient than other schemes.

2020-10-16
Bayaga, Anass, Ophoff, Jacques.  2019.  Determinants of E-Government Use in Developing Countries: The Influence of Privacy and Security Concerns. 2019 Conference on Next Generation Computing Applications (NextComp). :1—7.

There has been growing concern about privacy and security risks towards electronic-government (e-government) services adoption. Though there are positive results of e- government, there are still other contestable challenges that hamper success of e-government services. While many of the challenges have received considerable attention, there is still little to no firm research on others such as privacy and security risks, effects of infrastructure both in urban and rural settings. Other concerns that have received little consideration are how for instance; e-government serves as a function of perceived usefulness, ease of use, perceived benefit, as well as cultural dimensions and demographic constructs in South Africa. Guided by technology acceptance model, privacy calculus, Hofstede cultural theory and institutional logic theory, the current research sought to examine determinants of e- government use in developing countries. Anchored upon the aforementioned theories and background, the current study proposed three recommendations as potential value chain, derived from e-government service in response to citizens (end- user) support, government and community of stakeholders.

2020-02-10
Arnaldy, Defiana, Perdana, Audhika Rahmat.  2019.  Implementation and Analysis of Penetration Techniques Using the Man-In-The-Middle Attack. 2019 2nd International Conference of Computer and Informatics Engineering (IC2IE). :188–192.

This research conducted a security evaluation website with Penetration Testing terms. This Penetration testing is performed using the Man-In-The-Middle Attack method. This method is still widely used by hackers who are not responsible for performing Sniffing, which used for tapping from a targeted computer that aims to search for sensitive data. This research uses some penetration testing techniques, namely SQL Injection, XSS (Cross-site Scripting), and Brute Force Attack. Penetration testing in this study was conducted to determine the security hole (vulnerability), so the company will know about their weakness in their system. The result is 85% success for the penetration testing that finds the vulnerability on the website.

2020-11-20
Efstathopoulos, G., Grammatikis, P. R., Sarigiannidis, P., Argyriou, V., Sarigiannidis, A., Stamatakis, K., Angelopoulos, M. K., Athanasopoulos, S. K..  2019.  Operational Data Based Intrusion Detection System for Smart Grid. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.

With the rapid progression of Information and Communication Technology (ICT) and especially of Internet of Things (IoT), the conventional electrical grid is transformed into a new intelligent paradigm, known as Smart Grid (SG). SG provides significant benefits both for utility companies and energy consumers such as the two-way communication (both electricity and information), distributed generation, remote monitoring, self-healing and pervasive control. However, at the same time, this dependence introduces new security challenges, since SG inherits the vulnerabilities of multiple heterogeneous, co-existing legacy and smart technologies, such as IoT and Industrial Control Systems (ICS). An effective countermeasure against the various cyberthreats in SG is the Intrusion Detection System (IDS), informing the operator timely about the possible cyberattacks and anomalies. In this paper, we provide an anomaly-based IDS especially designed for SG utilising operational data from a real power plant. In particular, many machine learning and deep learning models were deployed, introducing novel parameters and feature representations in a comparative study. The evaluation analysis demonstrated the efficacy of the proposed IDS and the improvement due to the suggested complex data representation.

2020-01-27
Shamsi, Kaveh, Li, Meng, Plaks, Kenneth, Fazzari, Saverio, Pan, David Z., Jin, Yier.  2019.  IP Protection and Supply Chain Security through Logic Obfuscation: A Systematic Overview. ACM Transactions on Design Automation of Electronic Systems (TODAES). 24:65:1-65:36.

The globalization of the semiconductor supply chain introduces ever-increasing security and privacy risks. Two major concerns are IP theft through reverse engineering and malicious modification of the design. The latter concern in part relies on successful reverse engineering of the design as well. IC camouflaging and logic locking are two of the techniques under research that can thwart reverse engineering by end-users or foundries. However, developing low overhead locking/camouflaging schemes that can resist the ever-evolving state-of-the-art attacks has been a challenge for several years. This article provides a comprehensive review of the state of the art with respect to locking/camouflaging techniques. We start by defining a systematic threat model for these techniques and discuss how various real-world scenarios relate to each threat model. We then discuss the evolution of generic algorithmic attacks under each threat model eventually leading to the strongest existing attacks. The article then systematizes defences and along the way discusses attacks that are more specific to certain kinds of locking/camouflaging. The article then concludes by discussing open problems and future directions.

2020-07-24
Dong, Qiuxiang, Huang, Dijiang, Luo, Jim, Kang, Myong.  2018.  Achieving Fine-Grained Access Control with Discretionary User Revocation over Cloud Data. 2018 IEEE Conference on Communications and Network Security (CNS). :1—9.
Cloud storage solutions have gained momentum in recent years. However, cloud servers can not be fully trusted. Data access control have becomes one of the main impediments for further adoption. One appealing approach is to incorporate the access control into encrypted data, thus removing the need to trust the cloud servers. Among existing cryptographic solutions, Ciphertext Policy Attribute-Based Encryption (CP-ABE) is well suited for fine-grained data access control in cloud storage. As promising as it is, user revocation is a cumbersome problem that impedes its wide application. To address this issue, we design an access control system called DUR-CP-ABE, which implements identity-based User Revocation in a data owner Discretionary way. In short, the proposed solution provides the following salient features. First, user revocation enforcement is based on the discretion of the data owner, thus providing more flexibility. Second, no private key updates are needed when user revocation occurs. Third, the proposed scheme allows for group revocation of affiliated users in a batch operation. To the best of our knowledge, DUR-CP-ABE is the first CP-ABE solution to provide affiliation- based batch revocation functionality, which fits naturally into organizations' Identity and Access Management (IAM) structure. The analysis shows that the proposed access control system is provably secure and efficient in terms of computation, communi- cation and storage.
Li, Chunhua, He, Jinbiao, Lei, Cheng, Guo, Chan, Zhou, Ke.  2018.  Achieving Privacy-Preserving CP-ABE Access Control with Multi-Cloud. 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). :801—808.
Cloud storage service makes it very convenient for people to access and share data. At the same time, the confidentiality and privacy of user data is also facing great challenges. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme is widely considered to be the most suitable security access control technology for cloud storage environment. Aiming at the problem of privacy leakage caused by single-cloud CP-ABE which is commonly adopted in the current schemes, this paper proposes a privacy-preserving CP-ABE access control scheme using multi-cloud architecture. By improving the traditional CP-ABE algorithm and introducing a proxy to cut the user's private key, it can ensure that only a part of the user attribute set can be obtained by a single cloud, which effectively protects the privacy of user attributes. Meanwhile, the intermediate logical structure of the access policy tree is stored in proxy, and only the leaf node information is stored in the ciphertext, which effectively protects the privacy of the access policy. Security analysis shows that our scheme is effective against replay and man-in-the-middle attacks, as well as user collusion attack. Experimental results also demonstrates that the multi-cloud CP-ABE does not significantly increase the overhead of storage and encryption compared to the single cloud scheme, but the access control overhead decreases as the number of clouds increases. When the access policy is expressed with a AND gate structure, the decryption overhead is obviously less than that of a single cloud environment.
2020-09-04
Khan, Samar, Khodke, Priti A., Bhagat, Amol P..  2018.  An Approach to Fault Tolerant Key Generation and Secure Spread Spectrum Communiction. 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). :1—6.
Wireless communications have encountered a considerable improvement and have integrated human life through various applications, mainly by the widespread of mobile ad hoc and sensor networks. A fundamental characteristic of wireless communications are in their broadcast nature, which allows accessibility of information without placing restrictions on a user's location. However, accessibility also makes wireless communications vulnerable to eavesdropping. To enhance the security of network communication, we propose a separate key generation server which is responsible for key generation using complex random algorithm. The key will remain in database in encrypted format. To prevent brute force attack, we propose various group key generation algorithms in which every group will have separate group key to verify group member's identity. The group key will be verified with the session information before decryption, so that our system will prevent attack if any attacker knows the group key. To increase the security of the system, we propose three level encryption securities: Client side encryption using AES, Server side encryption using AES, and Artificial noise generation and addition. By using this our system is free from brute force attack as we are using three level message security and complex Random key generation algorithms.
Routh, Caleb, DeCrescenzo, Brandon, Roy, Swapnoneel.  2018.  Attacks and vulnerability analysis of e-mail as a password reset point. 2018 Fourth International Conference on Mobile and Secure Services (MobiSecServ). :1—5.
In this work, we perform security analysis of using an e-mail as a self-service password reset point, and exploit some of the vulnerabilities of e-mail servers' forgotten password reset paths. We perform and illustrate three different attacks on a personal Email account, using a variety of tools such as: public knowledge attainable through social media or public records to answer security questions and execute a social engineering attack, hardware available to the public to perform a man in the middle attack, and free software to perform a brute-force attack on the login of the email account. Our results expose some of the inherent vulnerabilities in using emails as password reset points. The findings are extremely relevant to the security of mobile devices since users' trend has leaned towards usage of mobile devices over desktops for Internet access.
2019-02-13
Yasumura, Y., Imabayashi, H., Yamana, H..  2018.  Attribute-based proxy re-encryption method for revocation in cloud storage: Reduction of communication cost at re-encryption. 2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA). :312–318.
In recent years, many users have uploaded data to the cloud for easy storage and sharing with other users. At the same time, security and privacy concerns for the data are growing. Attribute-based encryption (ABE) enables both data security and access control by defining users with attributes so that only those users who have matching attributes can decrypt them. For real-world applications of ABE, revocation of users or their attributes is necessary so that revoked users can no longer decrypt the data. In actual implementations, ABE is used in hybrid with a symmetric encryption scheme such as the advanced encryption standard (AES) where data is encrypted with AES and the AES key is encrypted with ABE. The hybrid encryption scheme requires re-encryption of the data upon revocation to ensure that the revoked users can no longer decrypt that data. To re-encrypt the data, the data owner (DO) must download the data from the cloud, then decrypt, encrypt, and upload the data back to the cloud, resulting in both huge communication costs and computational burden on the DO depending on the size of the data to be re-encrypted. In this paper, we propose an attribute-based proxy re-encryption method in which data can be re-encrypted in the cloud without downloading any data by adopting both ABE and Syalim's encryption scheme. Our proposed scheme reduces the communication cost between the DO and cloud storage. Experimental results show that the proposed method reduces the communication cost by as much as one quarter compared to that of the trivial solution.