Biblio

Found 1162 results

Filters: Keyword is Collaboration  [Clear All Filters]
2019-11-12
Pîrlea, George, Sergey, Ilya.  2018.  Mechanising Blockchain Consensus. Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs. :78-90.

We present the first formalisation of a blockchain-based distributed consensus protocol with a proof of its consistency mechanised in an interactive proof assistant. Our development includes a reference mechanisation of the block forest data structure, necessary for implementing provably correct per-node protocol logic. We also define a model of a network, implementing the protocol in the form of a replicated state-transition system. The protocol's executions are modeled via a small-step operational semantics for asynchronous message passing, in which packages can be rearranged or duplicated. In this work, we focus on the notion of global system safety, proving a form of eventual consistency. To do so, we provide a library of theorems about a pure functional implementation of block forests, define an inductive system invariant, and show that, in a quiescent system state, it implies a global agreement on the state of per-node transaction ledgers. Our development is parametric with respect to implementations of several security primitives, such as hash-functions, a notion of a proof object, a Validator Acceptance Function, and a Fork Choice Rule. We precisely characterise the assumptions, made about these components for proving the global system consensus, and discuss their adequacy. All results described in this paper are formalised in Coq.

Xiao, Lili, Xiang, Shuangqing, Zhuy, Huibiao.  2018.  Modeling and Verifying SDN with Multiple Controllers. Proceedings of the 33rd Annual ACM Symposium on Applied Computing. :419-422.

SDN (Software Defined Network) with multiple controllers draws more attention for the increasing scale of the network. The architecture can handle what SDN with single controller is not able to address. In order to understand what this architecture can accomplish and face precisely, we analyze it with formal methods. In this paper, we apply CSP (Communicating Sequential Processes) to model the routing service of SDN under HyperFlow architecture based on OpenFlow protocol. By using model checker PAT (Process Analysis Toolkit), we verify that the models satisfy three properties, covering deadlock freeness, consistency and fault tolerance.

2019-05-20
Cebe, Mumin, Kaplan, Berkay, Akkaya, Kemal.  2018.  A Network Coding Based Information Spreading Approach for Permissioned Blockchain in IoT Settings. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :470-475.

Permissioned Blockchain (PBC) has become a prevalent data structure to ensure that the records are immutable and secure. However, PBC still has significant challenges before it can be realized in different applications. One of such challenges is the overhead of the communication which is required to execute the Byzantine Agreement (BA) protocol that is needed for consensus building. As such, it may not be feasible to implement PBC for resource constrained environments such as Internet-of-Things (IoT). In this paper, we assess the communication overhead of running BA in an IoT environment that consists of wireless nodes (e.g., Raspberry PIs) with meshing capabilities. As the the packet loss ratio is significant and makes BA unfeasible to scale, we propose a network coding based approach that will reduce the packet overhead and minimize the consensus completion time of the BA. Specifically, various network coding approaches are designed as a replacement to TCP protocol which relies on unicasting and acknowledgements. The evaluation on a network of Raspberry PIs demonstrates that our approach can significantly improve scalability making BA feasible for medium size IoT networks.

2019-03-06
Man, Y., Ding, L., Xiaoguo, Z..  2018.  Nonlinear System Identification Method Based on Improved Deep Belief Network. 2018 Chinese Automation Congress (CAC). :2379-2383.

Accurate model is very important for the control of nonlinear system. The traditional identification method based on shallow BP network is easy to fall into local optimal solution. In this paper, a modeling method for nonlinear system based on improved Deep Belief Network (DBN) is proposed. Continuous Restricted Boltzmann Machine (CRBM) is used as the first layer of the DBN, so that the network can more effectively deal with the actual data collected from the real systems. Then, the unsupervised training and supervised tuning were combine to improve the accuracy of identification. The simulation results show that the proposed method has a higher identification accuracy. Finally, this improved algorithm is applied to identification of diameter model of silicon single crystal and the simulation results prove its excellent ability of parameters identification.

Li, W., Li, S., Zhang, X., Pan, Q..  2018.  Optimization Algorithm Research of Logistics Distribution Path Based on the Deep Belief Network. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :60-63.

Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.

2019-11-19
Filvà, Daniel Amo, García-Peñalvo, Francisco José, Forment, Marc Alier, Escudero, David Fonseca, Casañ, Maria José.  2018.  Privacy and Identity Management in Learning Analytics Processes with Blockchain. Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality. :997-1003.

The collection of students' sensible data raises adverse reactions against Learning Analytics that decreases the confidence in its adoption. The laws and policies that surround the use of educational data are not enough to ensure privacy, security, validity, integrity and reliability of students' data. This problem has been detected through literature review and can be solved if a technological layer of automated checking rules is added above these policies. The aim of this thesis is to research about an emerging technology such as blockchain to preserve the identity of students and secure their data. In a first stage a systematic literature review will be conducted in order to set the context of the research. Afterwards, and through the scientific method, we will develop a blockchain based solution to automate rules and constraints with the aim to let students the governance of their data and to ensure data privacy and security.

2019-10-30
Jansen, Rob, Traudt, Matthew, Hopper, Nicholas.  2018.  Privacy-Preserving Dynamic Learning of Tor Network Traffic. Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. :1944-1961.

Experimentation tools facilitate exploration of Tor performance and security research problems and allow researchers to safely and privately conduct Tor experiments without risking harm to real Tor users. However, researchers using these tools configure them to generate network traffic based on simplifying assumptions and outdated measurements and without understanding the efficacy of their configuration choices. In this work, we design a novel technique for dynamically learning Tor network traffic models using hidden Markov modeling and privacy-preserving measurement techniques. We conduct a safe but detailed measurement study of Tor using 17 relays (\textasciitilde2% of Tor bandwidth) over the course of 6 months, measuring general statistics and models that can be used to generate a sequence of streams and packets. We show how our measurement results and traffic models can be used to generate traffic flows in private Tor networks and how our models are more realistic than standard and alternative network traffic generation\textasciitildemethods.

2019-05-20
Hanauer, Tanja, Hommel, Wolfgang, Metzger, Stefan, Pöhn, Daniela.  2018.  A Process Framework for Stakeholder-Specific Visualization of Security Metrics. Proceedings of the 13th International Conference on Availability, Reliability and Security. :28:1-28:10.

Awareness and knowledge management are key components to achieve a high level of information security in organizations. However, practical evidence suggests that there are significant discrepancies between the typical elements of security awareness campaigns, the decisions made and goals set by top-level management, and routine operations carried out by systems administration personnel. This paper presents Vis4Sec, a process framework for the generation and distribution of stakeholder-specific visualizations of security metrics, which assists in closing the gap between theoretical and practical information security by respecting the different points of view of the involved security report audiences. An implementation for patch management on Linux servers, deployed at a large data center, is used as a running example.

Hu, W., Ardeshiricham, A., Gobulukoglu, M. S., Wang, X., Kastner, R..  2018.  Property Specific Information Flow Analysis for Hardware Security Verification. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1-8.

Hardware information flow analysis detects security vulnerabilities resulting from unintended design flaws, timing channels, and hardware Trojans. These information flow models are typically generated in a general way, which includes a significant amount of redundancy that is irrelevant to the specified security properties. In this work, we propose a property specific approach for information flow security. We create information flow models tailored to the properties to be verified by performing a property specific search to identify security critical paths. This helps find suspicious signals that require closer inspection and quickly eliminates portions of the design that are free of security violations. Our property specific trimming technique reduces the complexity of the security model; this accelerates security verification and restricts potential security violations to a smaller region which helps quickly pinpoint hardware security vulnerabilities.

Sadkhan, S. B., Reda, D. M..  2018.  A Proposed Security Evaluator for Cryptosystem Based on Information Theory and Triangular Game. 2018 International Conference on Advanced Science and Engineering (ICOASE). :306-311.

The purpose of this research is to propose a new mathematical model, designed to evaluate the security of cryptosystems. This model is a mixture of ideas from two basic mathematical theories, information theory and game theory. The role of information theory is assigning the model with security criteria of the cryptosystems. The role of game theory was to produce the value of the game which is representing the outcome of these criteria, which finally refers to cryptosystem's security. The proposed model support an accurate and mathematical way to evaluate the security of cryptosystems by unifying the criteria resulted from information theory and produce a unique reasonable value.

Alamélou, Quentin, Berthier, Paul-Edmond, Cachet, Chloé, Cauchie, Stéphane, Fuller, Benjamin, Gaborit, Philippe, Simhadri, Sailesh.  2018.  Pseudoentropic Isometries: A New Framework for Fuzzy Extractor Reusability. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :673-684.

Fuzzy extractors (Dodiset al., Eurocrypt 2004) turn a noisy secret into a stable, uniformly distributed key. Reusable fuzzy extractors remain secure when multiple keys are produced from a single noisy secret (Boyen, CCS 2004). Boyen showed information-theoretically secure reusable fuzzy extractors are subject to strong limitations. Simoens et al. (IEEE S&P, 2009) then showed deployed constructions suffer severe security breaks when reused. Canetti et al. (Eurocrypt 2016) used computational security to sidestep this problem, building a computationally secure reusable fuzzy extractor that corrects a sublinear fraction of errors. We introduce a generic approach to constructing reusable fuzzy extractors. We define a new primitive called a reusable pseudoentropic isometry that projects an input metric space to an output metric space. This projection preserves distance and entropy even if the same input is mapped to multiple output metric spaces. A reusable pseudoentropy isometry yields a reusable fuzzy extractor by 1) randomizing the noisy secret using the isometry and 2) applying a traditional fuzzy extractor to derive a secret key. We propose reusable pseudoentropic isometries for the set difference and Hamming metrics. The set difference construction is built from composable digital lockers (Canetti and Dakdouk, Eurocrypt 2008). For the Hamming metric, we show that the second construction of Canetti et al.(Eurocrypt 2016) can be seen as an instantiation of our framework. In both cases, the pseudoentropic isometry's reusability requires noisy secrets distributions to have entropy in each symbol of the alphabet. Our constructions yield the first reusable fuzzy extractors that correct a constant fraction of errors. We also implement our set difference solution and describe two use cases.

2019-05-01
Chen, Huashan, Cho, Jin-Hee, Xu, Shouhuai.  2018.  Quantifying the Security Effectiveness of Firewalls and DMZs. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :9:1–9:11.

Firewalls and Demilitarized Zones (DMZs) are two mechanisms that have been widely employed to secure enterprise networks. Despite this, their security effectiveness has not been systematically quantified. In this paper, we make a first step towards filling this void by presenting a representational framework for investigating their security effectiveness in protecting enterprise networks. Through simulation experiments, we draw useful insights into the security effectiveness of firewalls and DMZs. To the best of our knowledge, these insights were not reported in the literature until now.

2019-11-12
Luo, Qiming, Lv, Ang, Hou, Ligang, Wang, Zhongchao.  2018.  Realization of System Verification Platform of IoT Smart Node Chip. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). :341-344.

With the development of large scale integrated circuits, the functions of the IoT chips have been increasingly perfect. The verification work has become one of the most important aspects. On the one hand, an efficient verification platform can ensure the correctness of the design. On the other hand, it can shorten the chip design cycle and reduce the design cost. In this paper, based on a transmission protocol of the IoT node, we propose a verification method which combines simulation verification and FPGA-based prototype verification. We also constructed a system verification platform for the IoT smart node chip combining two kinds of verification above. We have simulated and verificatied the related functions of the node chip using this platform successfully. It has a great reference value.

2019-10-30
Jenkins, Ira Ray, Bratus, Sergey, Smith, Sean, Koo, Maxwell.  2018.  Reinventing the Privilege Drop: How Principled Preservation of Programmer Intent Would Prevent Security Bugs. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :3:1-3:9.

The principle of least privilege requires that components of a program have access to only those resources necessary for their proper function. Defining proper function is a difficult task. Existing methods of privilege separation, like Control Flow Integrity and Software Fault Isolation, attempt to infer proper function by bridging the gaps between language abstractions and hardware capabilities. However, it is programmer intent that defines proper function, as the programmer writes the code that becomes law. Codifying programmer intent into policy is a promising way to capture proper function; however, often onerous policy creation can unnecessarily delay development and adoption. In this paper, we demonstrate the use of our ELF-based access control (ELFbac), a novel technique for policy definition and enforcement. ELFbac leverages the common programmer's existing mental model of scope, and allows for policy definition at the Application Binary Interface (ABI) level. We consider the roaming vulnerability found in OpenSSH, and demonstrate how using ELFbac would have provided strong mitigation with minimal program modification. This serves to illustrate the effectiveness of ELFbac as a means of privilege separation in further applications, and the intuitive, yet robust nature of our general approach to policy creation.

Madani, Pooria, Vlajic, Natalija.  2018.  Robustness of Deep Autoencoder in Intrusion Detection Under Adversarial Contamination. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :1:1-1:8.

The existing state-of-the-art in the field of intrusion detection systems (IDSs) generally involves some use of machine learning algorithms. However, the computer security community is growing increasingly aware that a sophisticated adversary could target the learning module of these IDSs in order to circumvent future detections. Consequently, going forward, robustness of machine-learning based IDSs against adversarial manipulation (i.e., poisoning) will be the key factor for the overall success of these systems in the real world. In our work, we focus on adaptive IDSs that use anomaly-based detection to identify malicious activities in an information system. To be able to evaluate the susceptibility of these IDSs to deliberate adversarial poisoning, we have developed a novel framework for their performance testing under adversarial contamination. We have also studied the viability of using deep autoencoders in the detection of anomalies in adaptive IDSs, as well as their overall robustness against adversarial poisoning. Our experimental results show that our proposed autoencoder-based IDS outperforms a generic PCA-based counterpart by more than 15% in terms of detection accuracy. The obtained results concerning the detection ability of the deep autoencoder IDS under adversarial contamination, compared to that of the PCA-based IDS, are also encouraging, with the deep autoencoder IDS maintaining a more stable detection in parallel to limiting the contamination of its training dataset to just bellow 2%.

2019-09-26
Stein, Benno, Clapp, Lazaro, Sridharan, Manu, Chang, Bor-Yuh Evan.  2018.  Safe Stream-Based Programming with Refinement Types. Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. :565-576.

In stream-based programming, data sources are abstracted as a stream of values that can be manipulated via callback functions. Stream-based programming is exploding in popularity, as it provides a powerful and expressive paradigm for handling asynchronous data sources in interactive software. However, high-level stream abstractions can also make it difficult for developers to reason about control- and data-flow relationships in their programs. This is particularly impactful when asynchronous stream-based code interacts with thread-limited features such as UI frameworks that restrict UI access to a single thread, since the threading behavior of streaming constructs is often non-intuitive and insufficiently documented. In this paper, we present a type-based approach that can statically prove the thread-safety of UI accesses in stream-based software. Our key insight is that the fluent APIs of stream-processing frameworks enable the tracking of threads via type-refinement, making it possible to reason automatically about what thread a piece of code runs on – a difficult problem in general. We implement the system as an annotation-based Java typechecker for Android programs built upon the popular ReactiveX framework and evaluate its efficacy by annotating and analyzing 8 open-source apps, where we find 33 instances of unsafe UI access while incurring an annotation burden of only one annotation per 186 source lines of code. We also report on our experience applying the typechecker to two much larger apps from the Uber Technologies, Inc. codebase, where it currently runs on every code change and blocks changes that introduce potential threading bugs.

2019-02-08
Das, Nilaksh, Shanbhogue, Madhuri, Chen, Shang-Tse, Hohman, Fred, Li, Siwei, Chen, Li, Kounavis, Michael E., Chau, Duen Horng.  2018.  SHIELD: Fast, Practical Defense and Vaccination for Deep Learning Using JPEG Compression. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. :196-204.

The rapidly growing body of research in adversarial machine learning has demonstrated that deep neural networks (DNNs) are highly vulnerable to adversarially generated images. This underscores the urgent need for practical defense techniques that can be readily deployed to combat attacks in real-time. Observing that many attack strategies aim to perturb image pixels in ways that are visually imperceptible, we place JPEG compression at the core of our proposed SHIELD defense framework, utilizing its capability to effectively "compress away" such pixel manipulation. To immunize a DNN model from artifacts introduced by compression, SHIELD "vaccinates" the model by retraining it with compressed images, where different compression levels are applied to generate multiple vaccinated models that are ultimately used together in an ensemble defense. On top of that, SHIELD adds an additional layer of protection by employing randomization at test time that compresses different regions of an image using random compression levels, making it harder for an adversary to estimate the transformation performed. This novel combination of vaccination, ensembling, and randomization makes SHIELD a fortified multi-pronged defense. We conducted extensive, large-scale experiments using the ImageNet dataset, and show that our approaches eliminate up to 98% of gray-box attacks delivered by strong adversarial techniques such as Carlini-Wagner's L2 attack and DeepFool. Our approaches are fast and work without requiring knowledge about the model.

2019-12-05
Ott, David E..  2018.  Software Defined Infrastructure: Rethinking Cybersecurity with a More Capable Toolset. SIGOPS Oper. Syst. Rev.. 52:129-133.

In Software Defined Infrastructure (SDI), virtualization techniques are used to decouple applications and higher-level services from their underlying physical compute, storage, and network resources. The approach offers a set of powerful new capabilities (isolation, encapsulation, portability, interposition), including the formation of a software-based, infrastructure-wide control plane for orchestrated management. In this position paper, we identify opportunities for revisiting ongoing cybersecurity challenges using SDI as a powerful new toolset. Benefits of this approach can be broadly utilized in public, private, and hybrid clouds, data centers, enterprise computing, IoT deployments, and more. The discussion motivates the research challenge underlying VMware's partnership with the National Science Foundation to fund novel and foundational research in this area. Known as the NSF/VMware Partnership on Software Defined Infrastructure as a Foundation for Clean-Slate Computing Security (SDI-CSCS), the jointly funded university research program is set to begin in the fall of 2017.

2019-10-30
Dean, Andrew, Agyeman, Michael Opoku.  2018.  A Study of the Advances in IoT Security. Proceedings of the 2Nd International Symposium on Computer Science and Intelligent Control. :15:1-15:5.

The Internet-of-things (IoT) holds a lot of benefits to our lives by removing menial tasks and improving efficiency of everyday objects. You are trusting your personal data and device control to the manufactures and you may not be aware of how much risk your putting your privacy at by sending your data over the internet. The internet-of-things may not be as secure as you think when the devices used are constrained by a lot of variables which attackers can exploit to gain access to your data / device and anything they connected to and as the internet-of-things is all about connecting devices together one weak point can be all it takes to gain full access. In this paper we have a look at the current advances in IoT security and the most efficient methods to protect IoT devices.

2019-12-05
Hanford, Nathan, Ahuja, Vishal, Farrens, Matthew K., Tierney, Brian, Ghosal, Dipak.  2018.  A Survey of End-System Optimizations for High-Speed Networks. ACM Comput. Surv.. 51:54:1-54:36.

The gap is widening between the processor clock speed of end-system architectures and network throughput capabilities. It is now physically possible to provide single-flow throughput of speeds up to 100 Gbps, and 400 Gbps will soon be possible. Most current research into high-speed data networking focuses on managing expanding network capabilities within datacenter Local Area Networks (LANs) or efficiently multiplexing millions of relatively small flows through a Wide Area Network (WAN). However, datacenter hyper-convergence places high-throughput networking workloads on general-purpose hardware, and distributed High-Performance Computing (HPC) applications require time-sensitive, high-throughput end-to-end flows (also referred to as ``elephant flows'') to occur over WANs. For these applications, the bottleneck is often the end-system and not the intervening network. Since the problem of the end-system bottleneck was uncovered, many techniques have been developed which address this mismatch with varying degrees of effectiveness. In this survey, we describe the most promising techniques, beginning with network architectures and NIC design, continuing with operating and end-system architectures, and concluding with clean-slate protocol design.

2019-11-19
Jiang, Jiaming, Chirkova, Rada, Doyle, Jon, Rosenthal, Arnon.  2018.  Towards Greater Expressiveness, Flexibility, and Uniformity in Access Control. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :217-219.

Attribute-based access control (ABAC) is a general access control model that subsumes numerous earlier access control models. Its increasing popularity stems from the intuitive generic structure of granting permissions based on application and domain attributes of users, subjects, objects, and other entities in the system. Multiple formal and informal languages have been developed to express policies in terms of such attributes. The utility of ABAC policy languages is potentially undermined without a properly formalized underlying model. The high-level structure in a majority of ABAC models consists of sets of tokens and sets of sets, expressions that demand that the reader unpack multiple levels of sets and tokens to determine what things mean. The resulting reduced readability potentially endangers correct expression, reduces maintainability, and impedes validation. These problems could be magnified in models that employ nonuniform representations of actions and their governing policies. We propose to avoid these magnified problems by recasting the high-level structure of ABAC models in a logical formalism that treats all actions (by users and others) uniformly and that keeps existing policy languages in place by interpreting their attributes in terms of the restructured model. In comparison to existing ABAC models, use of a logical language for model formalization, including hierarchies of types of entities and attributes, promises improved expressiveness in specifying the relationships between and requirements on application and domain attributes. A logical modeling language also potentially improves flexibility in representing relationships as attributes to support some widely used policy languages. Consistency and intelligibility are improved by using uniform means for representing different types of controlled actions—such as regular access control actions, administrative actions, and user logins—and their governing policies. Logical languages also provide a well-defined denotational semantics supported by numerous formal inference and verification tools.

2019-09-26
Tang, Yiming, Khatchadourian, Raffi, Bagherzadeh, Mehdi, Ahmed, Syed.  2018.  Towards Safe Refactoring for Intelligent Parallelization of Java 8 Streams. Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings. :206-207.

The Java 8 Stream API sets forth a promising new programming model that incorporates functional-like, MapReduce-style features into a mainstream programming language. However, using streams correctly and efficiently may involve subtle considerations. In this poster, we present our ongoing work and preliminary results towards an automated refactoring approach that assists developers in writing optimal stream code. The approach, based on ordering and typestate analysis, determines when it is safe and advantageous to convert streams to parallel and optimize parallel streams.

2019-08-05
Sun, M., Li, M., Gerdes, R..  2018.  Truth-Aware Optimal Decision-Making Framework with Driver Preferences for V2V Communications. 2018 IEEE Conference on Communications and Network Security (CNS). :1-9.

In Vehicle-to-Vehicle (V2V) communications, malicious actors may spread false information to undermine the safety and efficiency of the vehicular traffic stream. Thus, vehicles must determine how to respond to the contents of messages which maybe false even though they are authenticated in the sense that receivers can verify contents were not tampered with and originated from a verifiable transmitter. Existing solutions to find appropriate actions are inadequate since they separately address trust and decision, require the honest majority (more honest ones than malicious), and do not incorporate driver preferences in the decision-making process. In this work, we propose a novel trust-aware decision-making framework without requiring an honest majority. It securely determines the likelihood of reported road events despite the presence of false data, and consequently provides the optimal decision for the vehicles. The basic idea of our framework is to leverage the implied effect of the road event to verify the consistency between each vehicle's reported data and actual behavior, and determine the data trustworthiness and event belief by integrating the Bayes' rule and Dempster Shafer Theory. The resulting belief serves as inputs to a utility maximization framework focusing on both safety and efficiency. This framework considers the two basic necessities of the Intelligent Transportation System and also incorporates drivers' preferences to decide the optimal action. Simulation results show the robustness of our framework under the multiple-vehicle attack, and different balances between safety and efficiency can be achieved via selecting appropriate human preference factors based on the driver's risk-taking willingness.

2019-03-06
Viet, Hung Nguyen, Van, Quan Nguyen, Trang, Linh Le Thi, Nathan, Shone.  2018.  Using Deep Learning Model for Network Scanning Detection. Proceedings of the 4th International Conference on Frontiers of Educational Technologies. :117-121.

In recent years, new and devastating cyber attacks amplify the need for robust cybersecurity practices. Preventing novel cyber attacks requires the invention of Intrusion Detection Systems (IDSs), which can identify previously unseen attacks. Many researchers have attempted to produce anomaly - based IDSs, however they are not yet able to detect malicious network traffic consistently enough to warrant implementation in real networks. Obviously, it remains a challenge for the security community to produce IDSs that are suitable for implementation in the real world. In this paper, we propose a new approach using a Deep Belief Network with a combination of supervised and unsupervised machine learning methods for port scanning attacks detection - the task of probing enterprise networks or Internet wide services, searching for vulnerabilities or ways to infiltrate IT assets. Our proposed approach will be tested with network security datasets and compared with previously existing methods.

2019-11-19
Dijkhuis, Sander, van Wijk, Remco, Dorhout, Hidde, Bharosa, Nitesh.  2018.  When Willeke Can Get Rid of Paperwork: A Lean Infrastructure for Qualified Information Exchange Based on Trusted Identities. Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age. :89:1-89:10.

As a frequent participant in eSociety, Willeke is often preoccupied with paperwork because there is no easy to use, affordable way to act as a qualified person in the digital world. Confidential interactions take place over insecure channels like e-mail and post. This situation poses risks and costs for service providers, civilians and governments, while goals regarding confidentiality and privacy are not always met. The objective of this paper is to demonstrate an alternative architecture in which identifying persons, exchanging information, authorizing external parties and signing documents will become more user-friendly and secure. As a starting point, each person has their personal data space, provided by a qualified trust service provider that also issues a high level of assurance electronic ID. Three main building blocks are required: (1) secure exchange between the personal data space of each person, (2) coordination functionalities provided by a token based infrastructure, and (3) governance over this infrastructure. Following the design science research approach, we developed prototypes of the building blocks that we will pilot in practice. Policy makers and practitioners that want to enable Willeke to get rid of her paperwork can find guidance throughout this paper and are welcome to join the pilots in the Netherlands.