Biblio

Found 1221 results

Filters: Keyword is Internet of Things  [Clear All Filters]
2021-08-31
Murai, Toshiya, Shoji, Yuya, Nishiyama, Nobuhiko, Mizumoto, Tetsuya.  2020.  Magneto-Optical Isolator and Self-Holding Optical Switch Integrated with Thin-Film Magnet. 2020 Conference on Lasers and Electro-Optics (CLEO). :1–2.
Novel magneto-optical isolator and self-holding optical switch with an a-Si:H microring resonator are demonstrated. The devices are driven by the remanence of integrated thin-film magnet and, therefore, maintain their state without any power supply.
2022-09-09
Kieras, Timothy, Farooq, Muhammad Junaid, Zhu, Quanyan.  2020.  Modeling and Assessment of IoT Supply Chain Security Risks: The Role of Structural and Parametric Uncertainties. 2020 IEEE Security and Privacy Workshops (SPW). :163—170.

Supply chain security threats pose new challenges to security risk modeling techniques for complex ICT systems such as the IoT. With established techniques drawn from attack trees and reliability analysis providing needed points of reference, graph-based analysis can provide a framework for considering the role of suppliers in such systems. We present such a framework here while highlighting the need for a component-centered model. Given resource limitations when applying this model to existing systems, we study various classes of uncertainties in model development, including structural uncertainties and uncertainties in the magnitude of estimated event probabilities. Using case studies, we find that structural uncertainties constitute a greater challenge to model utility and as such should receive particular attention. Best practices in the face of these uncertainties are proposed.

2021-08-31
Yang, Jiahui, Yuan, Yao, Wang, Shuaibing, Bao, Lianwei, Wang, Ren.  2020.  No-load Switch-in Transient Process Simulation of 500kV Interface Transformer Used in HVDC Flexible. 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE). :1–4.
Interface transformer used in asynchronous networking was a kind of special transformer which's different from normal power transformer. During no-load switch-in, the magnitude of inrush current will be high, and the waveform distortion also be severity. Maybe the protections will be activated, even worse may lead the lockdown of the DC system. In this paper, field-circuit coupled finite element method was used for the study of transient characteristic of no-load switch-in, remanence simulation methods were presented. Quantitative analysis of the effect of closing making angle and core remanence on inrush current peak value, meanwhile, the distribution of magnetic field inside the tank during the transient process. The result indicated that the closing making angle and core remanence have obvious effect on inrush current peak value. The research results of this paper can be used to guide the formulation of no-load switch-in strategy of interface transformer, which was of great significance to ensure the smooth operation of HVDC Flexible system.
2021-11-08
Ruchkin, Vladimir, Fulin, Vladimir, Romanchuk, Vitaly, Koryachko, Alexei, Ruchkina, Ekaterina.  2020.  Personal Trusted Platform Module for the Multi-Core System of 5G Security and Privacy. 2020 ELEKTRO. :1–4.
The article is devoted to the choice of personal means of the 5G defense in dependence of hard- and software available to the user. The universal module MS 127.04 and its software compatible unit can be universally configured for use. An intelligent hardware and software platform is proposed for multi-core setting of policies for the automatic encryption of confidential data and selective blocking related to the implementation of computing security and confidentiality of data transfer, using such additional specially. A platform that resists the external influences is described. The platform is based on a universal module MS 127.05 (produced in Russia), that is a heterogeneous multiprocessor system on a chip), the system features 16 processor cores (NeuroMatrix Core 4) and five ARM Cortex-A5 units (ULSI 1879VM8Ya.
2020-10-30
Zhang, Jiliang, Qu, Gang.  2020.  Physical Unclonable Function-Based Key Sharing via Machine Learning for IoT Security. IEEE Transactions on Industrial Electronics. 67:7025—7033.

In many industry Internet of Things applications, resources like CPU, memory, and battery power are limited and cannot afford the classic cryptographic security solutions. Silicon physical unclonable function (PUF) is a lightweight security primitive that exploits manufacturing variations during the chip fabrication process for key generation and/or device authentication. However, traditional weak PUFs such as ring oscillator (RO) PUF generate chip-unique key for each device, which restricts their application in security protocols where the same key is required to be shared in resource-constrained devices. In this article, in order to address this issue, we propose a PUF-based key sharing method for the first time. The basic idea is to implement one-to-one input-output mapping with lookup table (LUT)-based interstage crossing structures in each level of inverters of RO PUF. Individual customization on configuration bits of interstage crossing structure and different RO selections with challenges bring high flexibility. Therefore, with the flexible configuration of interstage crossing structures and challenges, crossover RO PUF can generate the same shared key for resource-constrained devices, which enables a new application for lightweight key sharing protocols.

2021-08-31
Loreto, Jayson, Gerasta, Olga Joy L., Gumera, Aileen C..  2020.  Residual Current Circuit Implemented in Complementary Metal Oxide Semiconductor for Remanence Correction. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM). :1–6.
This research paper presented a design that will address the challenges brought by remanence in ground-fault current interrupter devices (gfci). Remanence or residual magnetism is the magnetization left behind in a ferromagnetic material (such as iron) after an external magnetic field is removed. Remanence will make the gfci devices less accurate and less reliable in tripping the current above threshold in just five (5) years. It affects the performance of the device in terms of efficiency, accuracy, and response time. In this research, the problems caused by remanence were alleviated by using two identical transformers in detecting residual current both for hot and neutral wires. The difference of the current detected by the two transformers will be the basis of the signal threshold in tripping the device. By doing so, the problems caused by remanence phenomenon will be solved without compromising the response time of the circuit which is around 16 mS. The design will extend the life span of GFCI devices up to 15 years.
2021-05-25
Kore, Ashwini, Patil, Shailaja.  2020.  Robust Cross-Layer Security Framework For Internet of Things Enabled Wireless Sensor Networks. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :142—147.

The significant development of Internet of Things (IoT) paradigm for monitoring the real-time applications using the wireless communication technologies leads to various challenges. The secure data transmission and privacy is one of the key challenges of IoT enabled Wireless Sensor Networks (WSNs) communications. Due to heterogeneity of attackers like Man-in-Middle Attack (MIMA), the present single layered security solutions are not sufficient. In this paper, the robust cross-layer trust computation algorithm for MIMA attacker detection proposed for IoT enabled WSNs called IoT enabled Cross-Layer Man-in-Middle Attack Detection System (IC-MADS). In IC-MADS, first robust clustering method proposed to form the clusters and cluster head (CH) preference. After clustering, for every sensor node, its trust value computed using the parameters of three layers such as MAC, Physical, and Network layers to protect the network communications in presence of security threats. The simulation results prove that IC-MADS achieves better protection against MIMA attacks with minimum overhead and energy consumption.

2021-06-28
Roshan, Rishu, Matam, Rakesh, Mukherjee, Mithun, Lloret, Jaime, Tripathy, Somanath.  2020.  A secure task-offloading framework for cooperative fog computing environment. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Fog computing architecture allows the end-user devices of an Internet of Things (IoT) application to meet their latency and computation requirements by offloading tasks to a fog node in proximity. This fog node in turn may offload the task to a neighboring fog node or the cloud-based on an optimal node selection policy. Several such node selection policies have been proposed that facilitate the selection of an optimal node, minimizing delay and energy consumption. However, one crucial assumption of these schemes is that all the networked fog nodes are authorized part of the fog network. This assumption is not valid, especially in a cooperative fog computing environment like a smart city, where fog nodes of multiple applications cooperate to meet their latency and computation requirements. In this paper, we propose a secure task-offloading framework for a distributed fog computing environment based on smart-contracts on the blockchain. The proposed framework allows a fog-node to securely offload tasks to a neighboring fog node, even if no prior trust-relation exists. The security analysis of the proposed framework shows how non-authenticated fog nodes are prevented from taking up offloading tasks.
2021-06-01
Hatti, Daneshwari I., Sutagundar, Ashok V..  2020.  Trust Induced Resource Provisioning (TIRP) Mechanism in IoT. 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP). :1–5.
Due to increased number of devices with limited resources in Internet of Things (IoT) has to serve time sensitive applications including health monitoring, emergency response, industrial applications and smart city etc. This has incurred the problem of solving the provisioning of limited computational resources of the devices to fulfill the requirement with reduced latency. With rapid increase of devices and heterogeneity characteristic the resource provisioning is crucial and leads to conflict of trusting among the devices requests. Trust is essential component in any context for communicating or sharing the resources in the network. The proposed work comprises of trusting and provisioning based on deadline. Trust quantity is measured with concept of game theory and optimal strategy decision among provider and customer and provision resources within deadline to execute the tasks is done by finding Nash equilibrium. Nash equilibrium (NE) is estimated by constructing the payoff matrix with choice of two player strategies. NE is obtained in the proposed work for the Trust- Respond (TR) strategy. The latency aware approach for avoiding resource contention due to limited resources of the edge devices, fog computing leverages the cloud services in a distributed way at the edge of the devices. The communication is established between edge devices-fog-cloud and provision of resources is performed based on scalar chain and Gang Plank theory of management to reduce latency and increase trust quantity. To test the performance of proposed work performance parameter considered are latency and computational time.
2021-03-29
Amin, A. H. M., Abdelmajid, N., Kiwanuka, F. N..  2020.  Identity-of-Things Model using Composite Identity on Permissioned Blockchain Network. 2020 Seventh International Conference on Software Defined Systems (SDS). :171—176.

The growing prevalence of Internet-of-Things (IoT) technology has led to an increase in the development of heterogeneous smart applications. Smart applications may involve a collaborative participation between IoT devices. Participation of IoT devices for specific application requires a tamper-proof identity to be generated and stored, in order to completely represent the device, as well as to eliminate the possibility of identity spoofing and presence of rogue devices in a network. In this paper, we present a composite Identity-of-Things (IDoT) approach on IoT devices with permissioned blockchain implementation for distributed identity management model. Our proposed approach considers both application and device domains in generating the composite identity. In addition, the use of permissioned blockchain for identity storage and verification allows the identity to be immutable. A simulation has been carried out to demonstrate the application of the proposed identity management model.

2021-01-25
Mazlisham, M. H., Adnan, S. F. Syed, Isa, M. A. Mat, Mahad, Z., Asbullah, M. A..  2020.  Analysis of Rabin-P and RSA-OAEP Encryption Scheme on Microprocessor Platform. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :292–296.

This paper presents an analysis of Rabin-P encryption scheme on microprocessor platform in term of runtime and energy consumption. A microprocessor is one of the devices utilized in the Internet of Things (IoT) structure. Therefore, in this work, the microprocessor selected is the Raspberry Pi that is powered with a smaller version of the Linux operating system for embedded devices, the Raspbian OS. A comparative analysis is then conducted for Rabin-p and RSA-OAEP cryptosystem in the Raspberry Pi setup. A conclusion can be made that Rabin-p performs faster in comparison to the RSA-OAEP cryptosystem in the microprocessor platform. Rabin-p can improve decryption efficiency by using only one modular exponentiation while produces a unique message after the decryption process.

2021-01-22
Akbari, I., Tahoun, E., Salahuddin, M. A., Limam, N., Boutaba, R..  2020.  ATMoS: Autonomous Threat Mitigation in SDN using Reinforcement Learning. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—9.
Machine Learning has revolutionized many fields of computer science. Reinforcement Learning (RL), in particular, stands out as a solution to sequential decision making problems. With the growing complexity of computer networks in the face of new emerging technologies, such as the Internet of Things and the growing complexity of threat vectors, there is a dire need for autonomous network systems. RL is a viable solution for achieving this autonomy. Software-defined Networking (SDN) provides a global network view and programmability of network behaviour, which can be employed for security management. Previous works in RL-based threat mitigation have mostly focused on very specific problems, mostly non-sequential, with ad-hoc solutions. In this paper, we propose ATMoS, a general framework designed to facilitate the rapid design of RL applications for network security management using SDN. We evaluate our framework for implementing RL applications for threat mitigation, by showcasing the use of ATMoS with a Neural Fitted Q-learning agent to mitigate an Advanced Persistent Threat. We present the RL model's convergence results showing the feasibility of our solution for active threat mitigation.
2021-08-02
Velan S., Senthil.  2020.  Introducing Aspect-Oriented Programming in Improving the Modularity of Middleware for Internet of Things. 2020 Advances in Science and Engineering Technology International Conferences (ASET). :1—5.
Internet of Things (IoT) has become the buzzword for the development of Smart City and its applications. In this context, development of supporting software forms the core part of the IoT infrastructure. A Middleware sits in between the IoT devices and interacts between them to exchange data among the components of the automated architecture. The Middleware services include hand shaking, data transfer and security among its core set of functionalities. It also includes cross-cutting functional services such as authentication, logging and caching. A software that can run these Middleware services requires a careful choice of a good software modelling technique. Aspect-Oriented Programming (AOP) is a software development methodology that can be used to independently encapsulate the core and cross-cutting functionalities of the Middleware services of the IoT infrastructure. In this paper, an attempt has been made using a simulation environment to independently model the two orthogonal functionalities of the Middleware with the focus to improve its modularity. Further, a quantitative measurement of the core design property of cohesion has been done to infer on the improvement in the reusability of the modules encapsulated in the Middleware of IoT. Based on the measurement, it was found that the modularity and reusability of functionalities in the Middleware software has improved in the AspectJ version compared to its equivalent Java version.
2020-12-14
Lee, M.-F. R., Chien, T.-W..  2020.  Artificial Intelligence and Internet of Things for Robotic Disaster Response. 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS). :1–6.
After the Fukushima nuclear disaster and the Wenchuan earthquake, the relevant government agencies recognized the urgency of disaster-straining robots. There are many natural or man-made disasters in Taiwan, and it is usually impossible to dispatch relevant personnel to search or explore immediately. The project proposes to use the architecture of Intelligent Internet of Things (AIoT) (Artificial Intelligence + Internet of Things) to coordinate with ground, surface and aerial and underwater robots, and apply them to disaster response, ground, surface and aerial and underwater swarm robots to collect environmental big data from the disaster site, and then through the Internet of Things. From the field workstation to the cloud for “training” deep learning model and “model verification”, the trained deep learning model is transmitted to the field workstation via the Internet of Things, and then transmitted to the ground, surface and aerial and underwater swarm robots for on-site continuing objects classification. Continuously verify the “identification” with the environment and make the best decisions for the response. The related tasks include monitoring, search and rescue of the target.
2020-12-28
Wang, A., Yuan, Z., He, B..  2020.  Design and Realization of Smart Home Security System Based on AWS. 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS). :291—295.
With the popularization and application of Internet of Things technology, the degree of intelligence of the home system is getting higher and higher. As an important part of the smart home, the security system plays an important role in protecting against accidents such as flammable gas leakage, fire, and burglary that may occur in the home environment. This design focuses on sensor signal acquisition and processing, wireless access, and cloud applications, and integrates Cypress’s new generation of PSoC 6 MCU, CYW4343W Wi-Fi and Bluetooth dual-module chips, and Amazon’s AWS cloud into smart home security System designing. First, through the designed air conditioning and refrigeration module, fire warning processing module, lighting control module, ventilation fan control module, combustible gas and smoke detection and warning module, important parameter information in the home environment is obtained. Then, the hardware system is connected to the AWS cloud platform through Wi-Fi; finally, a WEB interface is built in the AWS cloud to realize remote monitoring of the smart home environment. This design has a good reference for the design of future smart home security systems.
2021-09-30
Latif, Shahid, Idrees, Zeba, Zou, Zhuo, Ahmad, Jawad.  2020.  DRaNN: A Deep Random Neural Network Model for Intrusion Detection in Industrial IoT. 2020 International Conference on UK-China Emerging Technologies (UCET). :1–4.
Industrial Internet of Things (IIoT) has arisen as an emerging trend in the industrial sector. Millions of sensors present in IIoT networks generate a massive amount of data that can open the doors for several cyber-attacks. An intrusion detection system (IDS) monitors real-time internet traffic and identify the behavior and type of network attacks. In this paper, we presented a deep random neural (DRaNN) based scheme for intrusion detection in IIoT. The proposed scheme is evaluated by using a new generation IIoT security dataset UNSW-NB15. Experimental results prove that the proposed model successfully classified nine different types of attacks with a low false-positive rate and great accuracy of 99.54%. To validate the feasibility of the proposed scheme, experimental results are also compared with state-of-the-art deep learning-based intrusion detection schemes. The proposed model achieved a higher attack detection rate of 99.41%.
2021-10-04
Abbas Hamdani, Syed Wasif, Waheed Khan, Abdul, Iltaf, Naima, Iqbal, Waseem.  2020.  DTMSim-IoT: A Distributed Trust Management Simulator for IoT Networks. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :491–498.
In recent years, several trust management frame-works and models have been proposed for the Internet of Things (IoT). Focusing primarily on distributed trust management schemes; testing and validation of these models is still a challenging task. It requires the implementation of the proposed trust model for verification and validation of expected outcomes. Nevertheless, a stand-alone and standard IoT network simulator for testing of distributed trust management scheme is not yet available. In this paper, a .NET-based Distributed Trust Management Simulator for IoT Networks (DTMSim-IoT) is presented which enables the researcher to implement any static/dynamic trust management model to compute the trust value of a node. The trust computation will be calculated based on the direct-observation and trust value is updated after every transaction. Transaction history and logs of each event are maintained which can be viewed and exported as .csv file for future use. In addition to that, the simulator can also draw a graph based on the .csv file. Moreover, the simulator also offers to incorporate the feature of identification and mitigation of the On-Off Attack (OOA) in the IoT domain. Furthermore, after identifying any malicious activity by any node in the networks, the malevolent node is added to the malicious list and disseminated in the network to prevent potential On-Off attacks.
2021-04-08
Ameer, S., Benson, J., Sandhu, R..  2020.  The EGRBAC Model for Smart Home IoT. 2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science (IRI). :457–462.
The Internet of Things (IoT) is enabling smart houses, where multiple users with complex social relationships interact with smart devices. This requires sophisticated access control specification and enforcement models, that are currently lacking. In this paper, we introduce the extended generalized role based access control (EGRBAC) model for smart home IoT. We provide a formal definition for EGRBAC and illustrate its features with a use case. A proof-of-concept demonstration utilizing AWS-IoT Greengrass is discussed in the appendix. EGRBAC is a first step in developing a comprehensive family of access control models for smart home IoT.
2020-12-21
Enkhtaivan, B., Inoue, A..  2020.  Mediating Data Trustworthiness by Using Trusted Hardware between IoT Devices and Blockchain. 2020 IEEE International Conference on Smart Internet of Things (SmartIoT). :314–318.
In recent years, with the progress of data analysis methods utilizing artificial intelligence (AI) technology, concepts of smart cities collecting data from IoT devices and creating values by analyzing it have been proposed. However, making sure that the data is not tampered with is of the utmost importance. One way to do this is to utilize blockchain technology to record and trace the history of the data. Park and Kim proposed ensuring the trustworthiness of the data by utilizing an IoT device with a trusted execution environment (TEE). Also, Guan et al. proposed authenticating an IoT device and mediating data using a TEE. For the authentication, they use the physically unclonable function of the IoT device. Usually, IoT devices suffer from the lack of resources necessary for creating transactions for the blockchain ledger. In this paper, we present a secure protocol in which a TEE acts as a proxy to the IoT devices and creates the necessary transactions for the blockchain. We use an authenticated encryption method on the data transmission between the IoT device and TEE to authenticate the device and ensure the integrity and confidentiality of the data generated by the IoT devices.
2021-08-02
Danish, Syed Muhammad, Zhang, Kaiwen, Jacobsen, Hans-Arno.  2020.  BlockAM: An Adaptive Middleware for Intelligent Data Storage Selection for Internet of Things. 2020 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS). :61—71.
Current Internet of Things (IoT) infrastructures, with its massive data requirements, rely on cloud storage: however, usage of a single cloud storage can place limitations on the IoT applications in terms of service requirements (performance, availability, security etc.). Multi-cloud storage architecture has been emerged as a promising infrastructure to solve this problem, but this approach has limited impact due to the lack of differentiation between competing cloud solutions. Multiple decentralized storage solutions (e.g., based on blockchains) are entering the market with distinct characteristics in terms of architecture, performance, security and availability and at a lower price compared to cloud storage. In this work, we introduce BlockAM: an adaptive middleware for the intelligent selection of storage technology for IoT applications, which jointly considers the cloud, multi-cloud and decentralized storage technologies to store large-scale IoT data. We model the cost-minimization storage selection problem and propose two heuristic algorithms: Dynamic Programming (DP) based algorithm and Greedy Style (GS) algorithm, for optimizing the choice of data storage based on IoT application's service requirements. We also employ blockchain to store IoT data on-chain in order to provide data integrity, auditability and accountability to the middleware architecture. Comparisons among the heuristic algorithms are conducted through extensive experiments, which demonstrates that DP heuristic and GS heuristic achieve up to 92% and 80% accuracy respectively. Moreover, the price associated with a specific IoT application data storage decrease by up to 31.2% by employing our middleware solution.
2021-01-20
Li, Y., Yang, Y., Yu, X., Yang, T., Dong, L., Wang, W..  2020.  IoT-APIScanner: Detecting API Unauthorized Access Vulnerabilities of IoT Platform. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—5.

The Internet of Things enables interaction between IoT devices and users through the cloud. The cloud provides services such as account monitoring, device management, and device control. As the center of the IoT platform, the cloud provides services to IoT devices and IoT applications through APIs. Therefore, the permission verification of the API is essential. However, we found that some APIs are unverified, which allows unauthorized users to access cloud resources or control devices; it could threaten the security of devices and cloud. To check for unauthorized access to the API, we developed IoT-APIScanner, a framework to check the permission verification of the cloud API. Through observation, we found there is a large amount of interactive information between IoT application and cloud, which include the APIs and related parameters, so we can extract them by analyzing the code of the IoT application, and use this for mutating API test cases. Through these test cases, we can effectively check the permissions of the API. In our research, we extracted a total of 5 platform APIs. Among them, the proportion of APIs without permission verification reached 13.3%. Our research shows that attackers could use the API without permission verification to obtain user privacy or control of devices.

2021-03-09
Adhikari, M., Panda, P. K., Chattopadhyay, S., Majumdar, S..  2020.  A Novel Group-Based Authentication and Key Agreement Protocol for IoT Enabled LTE/LTE–A Network. 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET). :168—172.

This paper deals with novel group-based Authentication and Key Agreement protocol for Internet of Things(IoT) enabled LTE/LTE-A network to overcome the problems of computational overhead, complexity and problem of heterogeneous devices, where other existing methods are lagging behind in attaining security requirements and computational overhead. In this work, two Groups are created among Machine Type Communication Devices (MTCDs) on the basis of device type to reduce complexity and problems of heterogeneous devices. This paper fulfills all the security requirements such as preservation, mutual authentication, confidentiality. Bio-metric authentication has been used to enhance security level of the network. The security and performance analysis have been verified through simulation results. Moreover, the performance of the proposed Novel Group-Based Authentication and key Agreement(AKA) Protocol is analyzed with other existing IoT enabled LTE/LTE-A protocol.

Sibahee, M. A. A., Lu, S., Abduljabbar, Z. A., Liu, E. X., Ran, Y., Al-ashoor, A. A. J., Hussain, M. A., Hussien, Z. A..  2020.  Promising Bio-Authentication Scheme to Protect Documents for E2E S2S in IoT-Cloud. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—6.

Document integrity and origin for E2E S2S in IoTcloud have recently received considerable attention because of their importance in the real-world fields. Maintaining integrity could protect decisions made based on these message/image documents. Authentication and integrity solutions have been conducted to recognise or protect any modification in the exchange of documents between E2E S2S (smart-to-smart). However, none of the proposed schemes appear to be sufficiently designed as a secure scheme to prevent known attacks or applicable to smart devices. We propose a robust scheme that aims to protect the integrity of documents for each users session by integrating HMAC-SHA-256, handwritten feature extraction using a local binary pattern, one-time random pixel sequence based on RC4 to randomly hide authentication codes using LSB. The proposed scheme can provide users with one-time bio-key, robust message anonymity and a disappearing authentication code that does not draw the attention of eavesdroppers. Thus, the scheme improves the data integrity for a users messages/image documents, phase key agreement, bio-key management and a one-time message/image document code for each users session. The concept of stego-anonymity is also introduced to provide additional security to cover a hashed value. Finally, security analysis and experimental results demonstrate and prove the invulnerability and efficiency of the proposed scheme.

2021-03-29
Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

2021-05-13
Zhao, Haining, Chen, Liquan.  2020.  Artificial Intelligence Security Issues and Responses. 2020 IEEE 6th International Conference on Computer and Communications (ICCC). :2276—2283.
As a current disruptive and transformative technology, artificial intelligence is constantly infiltrating all aspects of production and life. However, with the in-depth development and application of artificial intelligence, the security challenges it faces have become more and more prominent. In the real world, attacks against intelligent systems such as the Internet of Things, smart homes, and driverless cars are constantly appearing, and incidents of artificial intelligence being used in cyber-attacks and cybercrimes frequently occur. This article aims to discuss artificial intelligence security issues and propose some countermeasures.