Biblio

Found 1221 results

Filters: Keyword is Internet of Things  [Clear All Filters]
2023-06-09
L, Gururaj H, C, Soundarya B, V, Janhavi, H, Lakshmi, MJ, Prassan Kumar.  2022.  Analysis of Cyber Security Attacks using Kali Linux. 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). :1—6.
In the prevailing situation, the sports like economic, industrial, cultural, social, and governmental activities are carried out in the online world. Today's international is particularly dependent on the wireless era and protective these statistics from cyber-assaults is a hard hassle. The reason for cyber-assaults is to damage thieve the credentials. In a few other cases, cyber-attacks ought to have a navy or political functions. The damages are PC viruses, facts break, DDS, and exceptional attack vectors. To this surrender, various companies use diverse answers to prevent harm because of cyberattacks. Cyber safety follows actual-time data at the modern-day-day IT data. So, far, numerous techniques have proposed with the resource of researchers around the area to prevent cyber-attacks or lessen the harm due to them. The cause of this has a look at is to survey and comprehensively evaluate the usual advances supplied around cyber safety and to analyse the traumatic situations, weaknesses, and strengths of the proposed techniques. Different sorts of attacks are taken into consideration in element. In addition, evaluation of various cyber-attacks had been finished through the platform called Kali Linux. It is predicted that the complete assessment has a have a study furnished for college students, teachers, IT, and cyber safety researchers might be beneficial.
2022-12-09
Thiagarajan, K., Dixit, Chandra Kumar, Panneerselvam, M., Madhuvappan, C.Arunkumar, Gadde, Samata, Shrote, Jyoti N.  2022.  Analysis on the Growth of Artificial Intelligence for Application Security in Internet of Things. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :6—12.
Artificial intelligence is a subfield of computer science that refers to the intelligence displayed by machines or software. The research has influenced the rapid development of smart devices that have a significant impact on our daily lives. Science, engineering, business, and medicine have all improved their prediction powers in order to make our lives easier in our daily tasks. The quality and efficiency of regions that use artificial intelligence has improved, as shown in this study. It successfully handles data organisation and environment difficulties, allowing for the development of a more solid and rigorous model. The pace of life is quickening in the digital age, and the PC Internet falls well short of meeting people’s needs. Users want to be able to get convenient network information services at any time and from any location
2022-12-20
Xu, Zheng.  2022.  The application of white-box encryption algorithms for distributed devices on the Internet of Things. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :298–301.
With the rapid development of the Internet of Things and the exploration of its application scenarios, embedded devices are deployed in various environments to collect information and data. In such environments, the security of embedded devices cannot be guaranteed and are vulnerable to various attacks, even device capture attacks. When embedded devices are attacked, the attacker can obtain the information transmitted by the channel during the encryption process and the internal operation of the encryption. In this paper, we analyze various existing white-box schemes and show whether they are suitable for application in IoT. We propose an application of WBEAs for distributed devices in IoT scenarios and conduct experiments on several devices in IoT scenarios.
2023-01-05
Ebrahimabadi, Mohammad, Younis, Mohamed, Lalouani, Wassila, Karimi, Naghmeh.  2022.  An Attack Resilient PUF-based Authentication Mechanism for Distributed Systems. 2022 35th International Conference on VLSI Design and 2022 21st International Conference on Embedded Systems (VLSID). :108–113.
In most PUF-based authentication schemes, a central server is usually engaged to verify the response of the device’s PUF to challenge bit-streams. However, the server availability may be intermittent in practice. To tackle such an issue, this paper proposes a new protocol for supporting distributed authentication while avoiding vulnerability to information leakage where CRPs could be retrieved from hacked devices and collectively used to model the PUF. The main idea is to provision for scrambling the challenge bit-stream in a way that is dependent on the verifier. The scrambling pattern varies per authentication round for each device and independently across devices. In essence, the scrambling function becomes node- and packetspecific and the response received by two verifiers of one device for the same challenge bit-stream could vary. Thus, neither the scrambling function can be reverted, nor the PUF can be modeled even by a collusive set of malicious nodes. The validation results using data of an FPGA-based implementation demonstrate the effectiveness of our approach in thwarting PUF modeling attacks by collusive actors. We also discuss the approach resiliency against impersonation, Sybil, and reverse engineering attacks.
2023-05-30
Saranya, K., Valarmathi, Dr. A..  2022.  A Comparative Study on Machine Learning based Cross Layer Security in Internet of Things (IoT). 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :267—273.
The Internet of Things is a developing technology that converts physical objects into virtual objects connected to the internet using wired and wireless network architecture. Use of cross-layer techniques in the internet of things is primarily driven by the high heterogeneity of hardware and software capabilities. Although traditional layered architecture has been effective for a while, cross-layer protocols have the potential to greatly improve a number of wireless network characteristics, including bandwidth and energy usage. Also, one of the main concerns with the internet of things is security, and machine learning (ML) techniques are thought to be the most cuttingedge and viable approach. This has led to a plethora of new research directions for tackling IoT's growing security issues. In the proposed study, a number of cross-layer approaches based on machine learning techniques that have been offered in the past to address issues and challenges brought on by the variety of IoT are in-depth examined. Additionally, the main issues are mentioned and analyzed, including those related to scalability, interoperability, security, privacy, mobility, and energy utilization.
2023-04-27
Rafique, Wajid, Hafid, Abdelhakim Senhaji, Cherkaoui, Soumaya.  2022.  Complementing IoT Services Using Software-Defined Information Centric Networks: A Comprehensive Survey. IEEE Internet of Things Journal. 9:23545–23569.
IoT connects a large number of physical objects with the Internet that capture and exchange real-time information for service provisioning. Traditional network management schemes face challenges to manage vast amounts of network traffic generated by IoT services. Software-defined networking (SDN) and information-centric networking (ICN) are two complementary technologies that could be integrated to solve the challenges of different aspects of IoT service provisioning. ICN offers a clean-slate design to accommodate continuously increasing network traffic by considering content as a network primitive. It provides a novel solution for information propagation and delivery for large-scale IoT services. On the other hand, SDN allocates overall network management responsibilities to a central controller, where network elements act merely as traffic forwarding components. An SDN-enabled network supports ICN without deploying ICN-capable hardware. Therefore, the integration of SDN and ICN provides benefits for large-scale IoT services. This article provides a comprehensive survey on software-defined information-centric Internet of Things (SDIC-IoT) for IoT service provisioning. We present critical enabling technologies of SDIC-IoT, discuss its architecture, and describe its benefits for IoT service provisioning. We elaborate on key IoT service provisioning requirements and discuss how SDIC-IoT supports different aspects of IoT services. We define different taxonomies of SDIC-IoT literature based on various performance parameters. Furthermore, we extensively discuss different use cases, synergies, and advances to realize the SDIC-IoT concept. Finally, we present current challenges and future research directions of IoT service provisioning using SDIC-IoT.
Conference Name: IEEE Internet of Things Journal
2023-05-26
Sergeevich, Basan Alexander, Elena Sergeevna, Basan, Nikolaevna, Ivannikova Tatyana, Sergey Vitalievich, Korchalovsky, Dmitrievna, Mikhailova Vasilisa, Mariya Gennadievna, Shulika.  2022.  The concept of the knowledge base of threats to cyber-physical systems based on the ontological approach. 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). :90—95.
Due to the rapid development of cyber-physical systems, there are more and more security problems. The purpose of this work is to develop the concept of a knowledge base in the field of security of cyber-physical systems based on an ontological approach. To create the concept of a knowledge base, it was necessary to consider the system of a cyber-physical system and highlight its structural parts. As a result, the main concepts of the security of a cyber-physical system were identified and the concept of a knowledge base was drawn up, which in the future will help to analyze potential threats to cyber-physical systems.
2023-02-03
Revathi, K., Tamilselvi, T., Tamilselvi, K., Shanthakumar, P., Samydurai, A..  2022.  Context Aware Fog-Assisted Vital Sign Monitoring System: Design and Implementation. 2022 International Conference on Edge Computing and Applications (ICECAA). :108–112.
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
2023-02-17
Li, Nige, Zhou, Peng, Wang, Tengyan, Chen, Jingnan.  2022.  Control flow integrity check based on LBR register in power 5G environment. 2022 China International Conference on Electricity Distribution (CICED). :1211–1216.
This paper proposes a control flow integrity checking method based on the LBR register: through an analysis of the static target program loaded binary modules, gain function attributes such as borders and build the initial transfer of legal control flow boundary, real-time maintenance when combined with the dynamic execution of the program flow of control transfer record, build a complete profile control flow transfer security; Get the call location of /bin/sh or system() in the program to build an internal monitor for control-flow integrity checks. In the process of program execution, on the one hand, the control flow transfer outside the outline is judged as the abnormal control flow transfer with attack threat; On the other hand, abnormal transitions across the contour are picked up by an internal detector. In this method, by identifying abnormal control flow transitions, attacks are initially detected before the attack code is executed, while some attacks that bypass the coarse-grained verification of security profile are captured by the refined internal detector of control flow integrity. This method reduces the cost of control flow integrity check by using the safety profile analysis of coarse-grained check. In addition, a fine-grained shell internal detector is inserted into the contour to improve the safety performance of the system and achieve a good balance between performance and efficiency.
2023-05-30
Kharkwal, Ayushi, Mishra, Saumya, Paul, Aditi.  2022.  Cross-Layer DoS Attack Detection Technique for Internet of Things. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :368—372.
Security of Internet of Things (IoT) is one of the most prevalent crucial challenges ever since. The diversified devices and their specification along with resource constrained protocols made it more complex to address over all security need of IoT. Denial of Service attacks, being the most powerful and frequent attacks on IoT have been considered so forth. However, the attack happens on multiple layers and thus a single detection technique for each layer is not sufficient and effective to combat these attacks. Current study focuses on cross layer intrusion detection system (IDS) for detection of multiple Denial of Service (DoS) attacks. Presently, two attacks at Transmission Control Protocol (TCP) and Routing Protocol are considered for Low power and Lossy Networks (RPL) and a neural network-based IDS approach has been proposed for the detection of such attacks. The attacks are simulated on NetSim and detection and the performance shows up to 80% detection probabilities.
2023-02-28
Ahmed, Sabrina, Subah, Zareen, Ali, Mohammed Zamshed.  2022.  Cryptographic Data Security for IoT Healthcare in 5G and Beyond Networks. 2022 IEEE Sensors. :1—4.
While 5G Edge Computing along with IoT technology has transformed the future of healthcare data transmission, it presents security vulnerabilities and risks when transmitting patients' confidential information. Currently, there are very few reliable security solutions available for healthcare data that routes through SDN routers in 5G Edge Computing. These solutions do not provide cryptographic security from IoT sensor devices. In this paper, we studied how 5G edge computing integrated with IoT network helps healthcare data transmission for remote medical treatment, explored security risks associated with unsecured data transmission, and finally proposed a cryptographic end-to-end security solution initiated at IoT sensor devices and routed through SDN routers. Our proposed solution with cryptographic security initiated at IoT sensor goes through SDN control plane and data plane in 5G edge computing and provides an end-to-end secured communication from IoT device to doctor's office. A prototype built with two-layer encrypted communication has been lab tested with promising results. This analysis will help future security implementation for eHealth in 5G and beyond networks.
2023-09-01
Musa, Nura Shifa, Mirza, Nada Masood, Ali, Adnan.  2022.  Current Trends in Internet of Things Forensics. 2022 International Arab Conference on Information Technology (ACIT). :1—5.
Digital forensics is essential when performing in-depth crime investigations and evidence extraction, especially in the field of the Internet of Things, where there is a ton of information every second boosted with latest and smartest technological devices. However, the enormous growth of data and the nature of its complexity could constrain the data examination process since traditional data acquisition techniques are not applicable nowadays. Therefore, if the knowledge gap between digital forensics and the Internet of Things is not bridged, investigators will jeopardize the loss of a possible rich source of evidence that otherwise could act as a lead in solving open cases. The work aims to introduce examples of employing the latest Internet of Things forensics approaches as a panacea in this regard. The paper covers a variety of articles presenting the new Blockchain, fog, and video-based applications that can aid in easing the process of digital forensics investigation with a focus on the Internet of Things. The results of the review indicated that the above current trends are very promising procedures in the field of Internet of Things digital forensics and need to be explored and applied more actively.
2023-06-09
Haggi, Hamed, Sun, Wei.  2022.  Cyber-Physical Vulnerability Assessment of P2P Energy Exchanges in Active Distribution Networks. 2022 IEEE Kansas Power and Energy Conference (KPEC). :1—5.
Owing to the decreasing costs of distributed energy resources (DERs) as well as decarbonization policies, power systems are undergoing a modernization process. The large deployment of DERs together with internet of things (IoT) devices provide a platform for peer-to-peer (P2P) energy trading in active distribution networks. However, P2P energy trading with IoT devices have driven the grid more vulnerable to cyber-physical threats. To this end, in this paper, a resilience-oriented P2P energy exchange model is developed considering three phase unbalanced distribution systems. In addition, various scenarios for vulnerability assessment of P2P energy exchanges considering adverse prosumers and consumers, who provide false information regarding the price and quantity with the goal of maximum financial benefit and system operation disruption, are considered. Techno-economic survivability analysis against these attacks are investigated on a IEEE 13-node unbalanced distribution test system. Simulation results demonstrate that adverse peers can affect the physical operation of grid, maximize their benefits, and cause financial loss of other agents.
2023-09-08
Shah, Sunil Kumar, Sharma, Raghavendra, Shukla, Neeraj.  2022.  Data Security in IoT Networks using Software-Defined Networking: A Review. 2022 IEEE World Conference on Applied Intelligence and Computing (AIC). :909–913.
Wireless Sensor networks can be composed of smart buildings, smart homes, smart grids, and smart mobility, and they can even interconnect all these fields into a large-scale smart city network. Software-Defined Networking is an ideal technology to realize Internet-of-Things (IoT) Network and WSN network requirements and to efficiently enhance the security of these networks. Software defines Networking (SDN) is used to support IoT and WSN related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. This work is a study of different security mechanisms available in SDN for IoT and WSN network secure communication. This work also formulates the problems when existing methods are implemented with different networks parameters.
2023-09-18
Pranav, Putsa Rama Krishna, Verma, Sachin, Shenoy, Sahana, Saravanan, S..  2022.  Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :590—597.
The Internet of things (IoT) is proving to be a boon in granting internet access to regularly used objects and devices. Sensors, programs, and other innovations interact and trade information with different gadgets and frameworks over the web. Even in modern times, IoT gadgets experience the ill effects of primary security threats, which expose them to many dangers and malware, one among them being IoT botnets. Botnets carry out attacks by serving as a vector and this has become one of the significant dangers on the Internet. These vectors act against associations and carry out cybercrimes. They are used to produce spam, DDOS attacks, click frauds, and steal confidential data. IoT gadgets bring various challenges unlike the common malware on PCs and Android devices as IoT gadgets have heterogeneous processor architecture. Numerous researches use static or dynamic analysis for detection and classification of botnets on IoT gadgets. Most researchers haven't addressed the multi-architecture issue and they use a lot of computing resources for analyzing. Therefore, this approach attempts to classify botnets in IoT by using PSI-Graphs which effectively addresses the problem of encryption in IoT botnet detection, tackles the multi-architecture problem, and reduces computation time. It proposes another methodology for describing and recognizing botnets utilizing graph-based Machine Learning techniques and Exploratory Data Analysis to analyze the data and identify how separable the data is to recognize bots at an earlier stage so that IoT devices can be prevented from being attacked.
2023-02-17
Erkert, Keith, Lamontagne, Andrew, Chen, Jereming, Cummings, John, Hoikka, Mitchell, Xu, Kuai, Wang, Feng.  2022.  An End-to-End System for Monitoring IoT Devices in Smart Homes. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :929–930.
The technology advance and convergence of cyber physical systems, smart sensors, short-range wireless communications, cloud computing, and smartphone apps have driven the proliferation of Internet of things (IoT) devices in smart homes and smart industry. In light of the high heterogeneity of IoT system, the prevalence of system vulnerabilities in IoT devices and applications, and the broad attack surface across the entire IoT protocol stack, a fundamental and urgent research problem of IoT security is how to effectively collect, analyze, extract, model, and visualize the massive network traffic of IoT devices for understanding what is happening to IoT devices. Towards this end, this paper develops and demonstrates an end-to-end system with three key components, i.e., the IoT network traffic monitoring system via programmable home routers, the backend IoT traffic behavior analysis system in the cloud, and the frontend IoT visualization system via smartphone apps, for monitoring, analyzing and virtualizing network traffic behavior of heterogeneous IoT devices in smart homes. The main contributions of this demonstration paper is to present a novel system with an end-to-end process of collecting, analyzing and visualizing IoT network traffic in smart homes.
2023-08-25
Clark, Nicholas K..  2022.  Enhancing an Information-Centric Network of Things at the Internet Edge with Trust-Based Access Control. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). :1–6.
This work expands on our prior work on an architecture and supporting protocols to efficiently integrate constrained devices into an Information-Centric Network-based Internet of Things in a way that is both secure and scalable. In this work, we propose a scheme for addressing additional threats and integrating trust-based behavioral observations and attribute-based access control by leveraging the capabilities of less constrained coordinating nodes at the network edge close to IoT devices. These coordinating devices have better insight into the behavior of their constituent devices and access to a trusted overall security management cloud service. We leverage two modules, the security manager (SM) and trust manager (TM). The former provides data confidentiality, integrity, authentication, and authorization, while the latter analyzes the nodes' behavior using a trust model factoring in a set of service and network communication attributes. The trust model allows trust to be integrated into the SM's access control policies, allowing access to resources to be restricted to trusted nodes.
2023-01-06
Anastasakis, Zacharias, Psychogyios, Konstantinos, Velivassaki, Terpsi, Bourou, Stavroula, Voulkidis, Artemis, Skias, Dimitrios, Gonos, Antonis, Zahariadis, Theodore.  2022.  Enhancing Cyber Security in IoT Systems using FL-based IDS with Differential Privacy. 2022 Global Information Infrastructure and Networking Symposium (GIIS). :30—34.
Nowadays, IoT networks and devices exist in our everyday life, capturing and carrying unlimited data. However, increasing penetration of connected systems and devices implies rising threats for cybersecurity with IoT systems suffering from network attacks. Artificial Intelligence (AI) and Machine Learning take advantage of huge volumes of IoT network logs to enhance their cybersecurity in IoT. However, these data are often desired to remain private. Federated Learning (FL) provides a potential solution which enables collaborative training of attack detection model among a set of federated nodes, while preserving privacy as data remain local and are never disclosed or processed on central servers. While FL is resilient and resolves, up to a point, data governance and ownership issues, it does not guarantee security and privacy by design. Adversaries could interfere with the communication process, expose network vulnerabilities, and manipulate the training process, thus affecting the performance of the trained model. In this paper, we present a federated learning model which can successfully detect network attacks in IoT systems. Moreover, we evaluate its performance under various settings of differential privacy as a privacy preserving technique and configurations of the participating nodes. We prove that the proposed model protects the privacy without actually compromising performance. Our model realizes a limited performance impact of only ∼ 7% less testing accuracy compared to the baseline while simultaneously guaranteeing security and applicability.
2023-04-14
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
2022-12-02
Kalafatidis, Sarantis, Demiroglou, Vassilis, Mamatas, Lefteris, Tsaoussidis, Vassilis.  2022.  Experimenting with an SDN-Based NDN Deployment over Wireless Mesh Networks. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1—6.
Internet of Things (IoT) evolution calls for stringent communication demands, including low delay and reliability. At the same time, wireless mesh technology is used to extend the communication range of IoT deployments, in a multi-hop manner. However, Wireless Mesh Networks (WMNs) are facing link failures due to unstable topologies, resulting in unsatisfied IoT requirements. Named-Data Networking (NDN) can enhance WMNs to meet such IoT requirements, thanks to the content naming scheme and in-network caching, but necessitates adaptability to the challenging conditions of WMNs.In this work, we argue that Software-Defined Networking (SDN) is an ideal solution to fill this gap and introduce an integrated SDN-NDN deployment over WMNs involving: (i) global view of the network in real-time; (ii) centralized decision making; and (iii) dynamic NDN adaptation to network changes. The proposed system is deployed and evaluated over the wiLab.1 Fed4FIRE+ test-bed. The proof-of-concept results validate that the centralized control of SDN effectively supports the NDN operation in unstable topologies with frequent dynamic changes, such as the WMNs.
2023-08-11
Reddy, H Manohar, P C, Sajimon, Sankaran, Sriram.  2022.  On the Feasibility of Homomorphic Encryption for Internet of Things. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). :1—6.
Homomorphic encryption (HE) facilitates computing over encrypted data without using the secret keys. It is currently inefficient for practical implementation on the Internet of Things (IoT). However, the performance of these HE schemes may increase with optimized libraries and hardware capabilities. Thus, implementing and analyzing HE schemes and protocols on resource-constrained devices is essential to deriving optimized and secure schemes. This paper develops an energy profiling framework for homomorphic encryption on IoT devices. In particular, we analyze energy consumption and performance such as CPU and Memory utilization and execution time of numerous HE schemes using SEAL and HElib libraries on the Raspberry Pi 4 hardware platform and study energy-performance-security trade-offs. Our analysis reveals that HE schemes can incur a maximum of 70.07% in terms of energy consumption among the libraries. Finally, we provide guidelines for optimization of Homomorphic Encryption by leveraging multi-threading and edge computing capabilities for IoT applications. The insights obtained from this study can be used to develop secure and resource-constrained implementation of Homomorphic encryption depending on the needs of IoT applications.
2023-01-05
Jovanovic, Dijana, Marjanovic, Marina, Antonijevic, Milos, Zivkovic, Miodrag, Budimirovic, Nebojsa, Bacanin, Nebojsa.  2022.  Feature Selection by Improved Sand Cat Swarm Optimizer for Intrusion Detection. 2022 International Conference on Artificial Intelligence in Everything (AIE). :685–690.
The rapid growth of number of devices that are connected to internet of things (IoT) networks, increases the severity of security problems that need to be solved in order to provide safe environment for network data exchange. The discovery of new vulnerabilities is everyday challenge for security experts and many novel methods for detection and prevention of intrusions are being developed for dealing with this issue. To overcome these shortcomings, artificial intelligence (AI) can be used in development of advanced intrusion detection systems (IDS). This allows such system to adapt to emerging threats, react in real-time and adjust its behavior based on previous experiences. On the other hand, the traffic classification task becomes more difficult because of the large amount of data generated by network systems and high processing demands. For this reason, feature selection (FS) process is applied to reduce data complexity by removing less relevant data for the active classification task and therefore improving algorithm's accuracy. In this work, hybrid version of recently proposed sand cat swarm optimizer algorithm is proposed for feature selection with the goal of increasing performance of extreme learning machine classifier. The performance improvements are demonstrated by validating the proposed method on two well-known datasets - UNSW-NB15 and CICIDS-2017, and comparing the results with those reported for other cutting-edge algorithms that are dealing with the same problems and work in a similar configuration.
2023-07-31
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla Khalid, Mohamed, Amr, Guizani, Mohsen.  2022.  Fuzzy Elliptic Curve Cryptography for Authentication in Internet of Things. IEEE Internet of Things Journal. 9:9987—9998.
The security and privacy of the network in Internet of Things (IoT) systems are becoming more critical as we are more dependent on smart systems. Considering that packets are exchanged between the end user and the sensing devices, it is then important to ensure the security, privacy, and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for IoT systems. In this article, in order to improve the authentication and the encryption in IoT systems, we present a novel method of authentication and encryption based on elliptic curve cryptography (ECC) using random numbers generated by fuzzy logic. We evaluate our novel key generation method by using standard randomness tests, such as: frequency test, frequency test with mono block, run test, discrete Fourier transform (DFT) test, and advanced DFT test. Our results show superior performance compared to existing ECC based on shift registers. In addition, we apply some attack algorithms, such as Pollard’s \textbackslashrho and Baby-step Giant-step, to evaluate the vulnerability of the proposed scheme.
2023-01-13
Kapoor, Mehul, Kaur, Puneet Jai.  2022.  Hybridization of Deep Learning & Machine Learning For IoT Based Intrusion Classification. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :138—143.
With the rise of IoT applications, about 20.4 billion devices will be online in 2020, and that number will rise to 75 billion a month by 2025. Different sensors in IoT devices let them get and process data remotely and in real time. Sensors give them information that helps them make smart decisions and manage IoT environments well. IoT Security is one of the most important things to think about when you're developing, implementing, and deploying IoT platforms. People who use the Internet of Things (IoT) say that it allows people to communicate, monitor, and control automated devices from afar. This paper shows how to use Deep learning and machine learning to make an IDS that can be used on IoT platforms as a service. In the proposed method, a cnn mapped the features, and a random forest classifies normal and attack classes. In the end, the proposed method made a big difference in all performance parameters. Its average performance metrics have gone up 5% to 6%.
2023-02-28
Gopalakrishna, Nikhil Krishna, Anandayuvaraj, Dharun, Detti, Annan, Bland, Forrest Lee, Rahaman, Sazzadur, Davis, James C..  2022.  “If security is required”: Engineering and Security Practices for Machine Learning-based IoT Devices. 2022 IEEE/ACM 4th International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :1—8.
The latest generation of IoT systems incorporate machine learning (ML) technologies on edge devices. This introduces new engineering challenges to bring ML onto resource-constrained hardware, and complications for ensuring system security and privacy. Existing research prescribes iterative processes for machine learning enabled IoT products to ease development and increase product success. However, these processes mostly focus on existing practices used in other generic software development areas and are not specialized for the purpose of machine learning or IoT devices. This research seeks to characterize engineering processes and security practices for ML-enabled IoT systems through the lens of the engineering lifecycle. We collected data from practitioners through a survey (N=25) and interviews (N=4). We found that security processes and engineering methods vary by company. Respondents emphasized the engineering cost of security analysis and threat modeling, and trade-offs with business needs. Engineers reduce their security investment if it is not an explicit requirement. The threats of IP theft and reverse engineering were a consistent concern among practitioners when deploying ML for IoT devices. Based on our findings, we recommend further research into understanding engineering cost, compliance, and security trade-offs.