Biblio

Found 935 results

Filters: Keyword is Servers  [Clear All Filters]
2020-10-29
Chauhan, Gargi K, Patel, Saurabh M.  2018.  Public String Based Threshold Cryptography (PSTC) for Mobile Ad Hoc Networks (MANET). 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :1—5.
Communication is an essential part of everyday life, both as a social interaction and collaboration to achieve goals. Wireless technology has effectively release the users to roam more freely to achieving collaboration and communication. The principle attraction of mobile ad hoc networks (MANET) are their set-up less and decentralized action. However, mobile ad hoc networks are seen as relatively easy targets for attackers. Security in mobile ad hoc network is provided by encrypting the data when exchanging messages and key management. Cryptography is therefore vital to ensure privacy of message and robustness against disruption. The proposed scheme public string based threshold cryptography (PSTC) describes the new scheme based on threshold cryptography that provides reasonably secure and robust cryptography scheme for mobile ad hoc networks. The scheme is implemented and simulated in ns-2. The scheme is based on trust value and analyze against Denial of Service attack as node found the attacker, the node reject all packet from that attacker. In proposed scheme whole network is compromised only when all nodes of network is compromised because threshold nodes only sharing public string not the master private key. The scheme provides confidentiality and integrity. The default threshold value selected is 2 according to time and space analysis.
2020-10-05
Zhou, Ziqiang, Sun, Changhua, Lu, Jiazhong, Lv, Fengmao.  2018.  Research and Implementation of Mobile Application Security Detection Combining Static and Dynamic. 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :243–247.
With the popularity of the Internet and mobile intelligent terminals, the number of mobile applications is exploding. Mobile intelligent terminals trend to be the mainstream way of people's work and daily life online in place of PC terminals. Mobile application system brings some security problems inevitably while it provides convenience for people, and becomes a main target of hackers. Therefore, it is imminent to strengthen the security detection of mobile applications. This paper divides mobile application security detection into client security detection and server security detection. We propose a combining static and dynamic security detection method to detect client-side. We provide a method to get network information of server by capturing and analyzing mobile application traffic, and propose a fuzzy testing method based on HTTP protocol to detect server-side security vulnerabilities. Finally, on the basis of this, an automated platform for security detection of mobile application system is developed. Experiments show that the platform can detect the vulnerabilities of mobile application client and server effectively, and realize the automation of mobile application security detection. It can also reduce the cost of mobile security detection and enhance the security of mobile applications.
2019-02-13
Rashidi, B., Fung, C., Rahman, M..  2018.  A scalable and flexible DDoS mitigation system using network function virtualization. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Distributed Denial of Service (DDoS) attacks remain one of the top threats to enterprise networks and ISPs nowadays. It can cause tremendous damage by bringing down online websites or services. Existing DDoS defense solutions either brings high cost such as upgrading existing firewall or IPS, or bring excessive traffic delay by using third-party cloud-based DDoS filtering services. In this work, we propose a DDoS defense framework that utilizes Network Function Virtualization (NFV) architecture to provide low cost and highly flexible solutions for enterprises. In particular, the system uses virtual network agents to perform attack traffic filtering before they are forwarded to the target server. Agents are created on demand to verify the authenticity of the source of packets, and drop spoofed packets in order protect the target server. Furthermore, we design a scalable and flexible dispatcher to forward packets to corresponding agents for processing. A bucket-based forwarding mechanism is used to improve the scalability of the dispatcher through batching forwarding. The dispatcher can also adapt to agent addition and removal. Our simulation results demonstrate that the dispatcher can effectively serve a large volume of traffic with low dropping rate. The system can successfully mitigate SYN flood attack by introducing minimal performance degradation to legitimate traffic.
2020-07-24
Navya, J M, Sanjay, H A, Deepika, KM.  2018.  Securing smart grid data under key exposure and revocation in cloud computing. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C). :1—4.
Smart grid systems data has been exposed to several threats and attacks from different perspectives and have resulted in several system failures. Obtaining security of data and key exposure and enhancing system ability in data collection and transmission process are challenging, on the grounds smart grid data is sensitive and enormous sum. In this paper we introduce smart grid data security method along with advanced Cipher text policy attribute based encryption (CP-ABE). Cloud supported IoT is widely used in smart grid systems. Smart IoT devices collect data and perform status management. Data obtained from the IOT devices will be divided into blocks and encrypted data will be stored in different cloud server with different encrypted keys even when one cloud server is assaulted and encrypted key is exposed data cannot be decrypted, thereby the transmission and encryption process are done in correspondingly. We protect access-tree structure information even after the data is shared to user by solving revocation problem in which cloud will inform data owner to revoke and update encryption key after user has downloaded the data, which preserves the data privacy from unauthorized users. The analysis of the system concludes that our proposed system can meet the security requirements in smart grid systems along with cloud-Internet of things.
2020-05-08
Ali, Yasir, Shen, Zhen, Zhu, Fenghua, Xiong, Gang, Chen, Shichao, Xia, Yuanqing, Wang, Fei-Yue.  2018.  Solutions Verification for Cloud-Based Networked Control System using Karush-Kuhn-Tucker Conditions. 2018 Chinese Automation Congress (CAC). :1385—1389.
The rapid development of the Cloud Computing Technologies (CCTs) has amended the conventional design of resource-constrained Network Control System (NCS) to the powerful and flexible design of Cloud-Based Networked Control System (CB-NCS) by relocating the processing part to the cloud server. This arrangement has produced many internets based exquisite applications. However, this new arrangement has also raised many network security challenges for the cloud-based control system related to cyber-physical part of the system. In the absence of robust verification methodology, an attacker can launch the modification attack in order to destabilize or take control of NCS. It is desirable that there shall be a solution authentication methodology used to verify whether the incoming solutions are coming from the cloud or not. This paper proposes a methodology used for the verification of the receiving solution to the local control system from the cloud using Karush-Kuhn-Tucker (KKT) conditions, which is then applied to actuator after verification and thus ensure the stability in case of modification attack.
2020-11-16
Ullah, S., Shetty, S., Hassanzadeh, A..  2018.  Towards Modeling Attacker’s Opportunity for Improving Cyber Resilience in Energy Delivery Systems. 2018 Resilience Week (RWS). :100–107.
Cyber resiliency of Energy Delivery Systems (EDS) is critical for secure and resilient cyber infrastructure. Defense-in-depth architecture forces attackers to conduct lateral propagation until the target is compromised. Researchers developed techniques based on graph spectral matrices to model lateral propagation. However, these techniques ignore host criticality which is critical in EDS. In this paper, we model attacker's opportunity by developing three criticality metrics for each host along the path to the target. The first metric refers the opportunity of attackers before they penetrate the infrastructure. The second metric measure the opportunity a host provides by allowing attackers to propagate through the network. Along with vulnerability we also take into account the attributes of hosts and links within each path. Then, we derive third criticality metric to reflect the information flow dependency from each host to target. Finally, we provide system design for instantiating the proposed metrics for real network scenarios in EDS. We present simulation results which illustrates the effectiveness of the metrics for efficient defense deployment in EDS cyber infrastructure.
2019-01-16
Alamri, N., Chow, C. E., Aljaedi, A., Elgzil, A..  2018.  UFAP: Ultra-fast handoff authentication protocol for wireless mesh networks. 2018 Wireless Days (WD). :1–8.
Wireless mesh networking (WMN) is a new technology aimed to introduce the benefits of using multi-hop and multi-path to the wireless world. However, the absence of a fast and reliable handoff protocol is a major drawback especially in a technology designed to feature high mobility and scalability. We propose a fast and efficient handoff authentication protocol for wireless mesh networks. It is a token-based authentication protocol using pre-distributed parameters. We provide a performance comparison among our protocol, UFAP, and other protocols including EAP-TLS and EAP-PEAP tested in an actual setup. Performance analysis will prove that our proposed handoff authentication protocol is 250 times faster than EAP-PEAP and 500 times faster than EAP-TLS. The significant improvement in performance allows UFAP to provide seamless handoff and continuous operation even for real-time applications which can only tolerate short delays under 50 ms.
2020-11-23
Alruwaythi, M., Kambampaty, K., Nygard, K..  2018.  User Behavior Trust Modeling in Cloud Security. 2018 International Conference on Computational Science and Computational Intelligence (CSCI). :1336–1339.
Evaluating user behavior in cloud computing infrastructure is important for both Cloud Users and Cloud Service Providers. The service providers must ensure the safety of users who access the cloud. User behavior can be modeled and employed to help assess trust and play a role in ensuring authenticity and safety of the user. In this paper, we propose a User Behavior Trust Model based on Fuzzy Logic (UBTMFL). In this model, we develop user history patterns and compare them current user behavior. The outcome of the comparison is sent to a trust computation center to calculate a user trust value. This model considers three types of trust: direct, history and comprehensive. Simulation results are included.
2020-05-26
Tiennoy, Sasirom, Saivichit, Chaiyachet.  2018.  Using a Distributed Roadside Unit for the Data Dissemination Protocol in VANET With the Named Data Architecture. IEEE Access. 6:32612–32623.
Vehicular ad hoc network (VANET) has recently become one of the highly active research areas for wireless networking. Since VANET is a multi-hop wireless network with very high mobility and intermittent connection lifetime, it is important to effectively handle the data dissemination issue in this rapidly changing environment. However, the existing TCP/IP implementation may not fit into such a highly dynamic environment because the nodes in the network must often perform rerouting due to their inconsistency of connectivity. In addition, the drivers in the vehicles may want to acquire some data, but they do not know the address/location of such data storage. Hence, the named data networking (NDN) approach may be more desirable here. The NDN architecture is proposed for the future Internet, which focuses on the delivering mechanism based on the message contents instead of relying on the host addresses of the data. In this paper, a new protocol named roadside unit (RSU) assisted of named data network (RA-NDN) is presented. The RSU can operate as a standalone node [standalone RSU (SA-RSU)]. One benefit of deploying SA-RSUs is the improved network connectivity. This study uses the NS3 and SUMO software packages for the network simulator and traffic simulator software, respectively, to verify the performance of the RA-NDN protocol. To reduce the latency under various vehicular densities, vehicular transmission ranges, and number of requesters, the proposed approach is compared with vehicular NDN via a real-world data set in the urban area of Sathorn road in Bangkok, Thailand. The simulation results show that the RA-NDN protocol improves the performance of ad hoc communications with the increase in data received ratio and throughput and the decrease in total dissemination time and traffic load.
2020-11-23
Wu, K., Gao, X., Liu, Y..  2018.  Web server security evaluation method based on multi-source data. 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB). :1–6.
Traditional web security assessments are evaluated using a single data source, and the results of the calculations from different data sources are different. Based on multi-source data, this paper uses Analytic Hierarchy Process to construct an evaluation model, calculates the weight of each level of indicators in the web security evaluation model, analyzes and processes the data, calculates the host security threat assessment values at various levels, and visualizes the evaluation results through ECharts+WebGL technology.
2020-01-02
Harris, Albert, Snader, Robin, Kravets, Robin.  2018.  Aggio: A Coupon Safe for Privacy-Preserving Smart Retail Environments. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :174–186.

Researchers and industry experts are looking at how to improve a shopper's experience and a store's revenue by leveraging and integrating technologies at the edges of the network, such as Internet-of-Things (IoT) devices, cloud-based systems, and mobile applications. The integration of IoT technology can now be used to improve purchasing incentives through the use of electronic coupons. Research has shown that targeted electronic coupons are the most effective and coupons presented to the shopper when they are near the products capture the most shoppers' dollars. Although it is easy to imagine coupons being broadcast to a shopper's mobile device over a low-power wireless channel, such a solution must be able to advertise many products, target many individual shoppers, and at the same time, provide shoppers with their desired level of privacy. To support this type of IoT-enabled shopping experience, we have designed Aggio, an electronic coupon distribution system that enables the distribution of localized, targeted coupons while supporting user privacy and security. Aggio uses cryptographic mechanisms to not only provide security but also to manage shopper groups e.g., bronze, silver, and gold reward programs) and minimize resource usage, including bandwidth and energy. The novel use of cryptographic management of coupons and groups allows Aggio to reduce bandwidth use, as well as reduce the computing and energy resources needed to process incoming coupons. Through the use of local coupon storage on the shopper's mobile device, the shopper does not need to query the cloud and so does not need to expose all of the details of their shopping decisions. Finally, the use of privacy preserving communication between the shopper's mobile device and the CouponHubs that are distributed throughout the retail environment allows the shopper to expose their location to the store without divulging their location to all other shoppers present in the store.

2019-02-14
Kelkar, S., Kraus, T., Morgan, D., Zhang, J., Dai, R..  2018.  Analyzing HTTP-Based Information Exfiltration of Malicious Android Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1642-1645.

Exfiltrating sensitive information from smartphones has become one of the most significant security threats. We have built a system to identify HTTP-based information exfiltration of malicious Android applications. In this paper, we discuss the method to track the propagation of sensitive information in Android applications using static taint analysis. We have studied the leaked information, destinations to which information is exfiltrated, and their correlations with types of sensitive information. The analysis results based on 578 malicious Android applications have revealed that a significant portion of these applications are interested in identity-related sensitive information. The vast majority of malicious applications leak multiple types of sensitive information. We have also identified servers associated with three country codes including CN, US, and SG are most active in collecting sensitive information. The analysis results have also demonstrated that a wide range of non-default ports are used by suspicious URLs.

2019-02-08
Polyakov, V. V., Lapin, S. A..  2018.  Architecture of the Honeypot System for Studying Targeted Attacks. 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). :202-205.

Among the threats to information systems of state institutions, enterprises and financial organizations of particular importance are those originating from organized criminal groups that specialize in obtaining unauthorized access to the computer information protected by law. Criminal groups often possess a material base including financial, technical, human and other resources that allow to perform targeted attacks on information resources as secretly as possible. The principal features of such targeted attacks are the use of software created or modified specifically for use in illegal purposes with respect to specific organizations. Due to these circumstances, the detection of such attacks is quite difficult, and their prevention is even more complicated. In this regard, the task of identifying and analyzing such threats is very relevant. One effective way to solve it is to implement the Honeypot system, which allows to research the strategy and tactics of the attackers. In the present article, there is proposed the original architecture of the Honeypot system designed to study targeted attacks on information systems of criminogenic objects. The architectural design includes such basic elements as the functional component, the registrar of events occurring in the system and the protector. The key features of the proposed Honeypot system are considered, and the functional purpose of its main components is described. The proposed system can find its application in providing information security of institutions, organizations and enterprises, it can be used in the development of information security systems.

2019-02-14
Bae, S., Shin, Y..  2018.  An Automated System Recovery Using BlockChain. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :897-901.

The existing Disaster Recovery(DR) system has a technique for integrity of the duplicated file to be used for recovery, but it could not be used if the file was changed. In this study, a duplicate file is generated as a block and managed as a block-chain. If the duplicate file is corrupted, the DR system will check the integrity of the duplicated file by referring to the block-chain and proceed with the recovery. The proposed technology is verified through recovery performance evaluation and scenarios.

2019-10-02
Wang, S., Zhu, S., Zhang, Y..  2018.  Blockchain-Based Mutual Authentication Security Protocol for Distributed RFID Systems. 2018 IEEE Symposium on Computers and Communications (ISCC). :00074–00077.

Since radio frequency identification (RFID) technology has been used in various scenarios such as supply chain, access control system and credit card, tremendous efforts have been made to improve the authentication between tags and readers to prevent potential attacks. Though effective in certain circumstances, these existing methods usually require a server to maintain a database of identity related information for every tag, which makes the system vulnerable to the SQL injection attack and not suitable for distributed environment. To address these problems, we now propose a novel blockchain-based mutual authentication security protocol. In this new scheme, there is no need for the trusted third parties to provide security and privacy for the system. Authentication is executed as an unmodifiable transaction based on blockchain rather than database, which applies to distributed RFID systems with high security demand and relatively low real-time requirement. Analysis shows that our protocol is logically correct and can prevent multiple attacks.

2019-04-05
Nan, Z., Zhai, L., Zhai, L., Liu, H..  2018.  Botnet Homology Method Based on Symbolic Approximation Algorithm of Communication Characteristic Curve. 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1-6.

The IRC botnet is the earliest and most significant botnet group that has a significant impact. Its characteristic is to control multiple zombies hosts through the IRC protocol and constructing command control channels. Relevant research analyzes the large amount of network traffic generated by command interaction between the botnet client and the C&C server. Packet capture traffic monitoring on the network is currently a more effective detection method, but this information does not reflect the essential characteristics of the IRC botnet. The increase in the amount of erroneous judgments has often occurred. To identify whether the botnet control server is a homogenous botnet, dynamic network communication characteristic curves are extracted. For unequal time series, dynamic time warping distance clustering is used to identify the homologous botnets by category, and in order to improve detection. Speed, experiments will use SAX to reduce the dimension of the extracted curve, reducing the time cost without reducing the accuracy.

2019-07-01
Ha\c silo\u glu, A., Bali, A..  2018.  Central Audit Logging Mechanism in Personal Data Web Services. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-3.

Personal data have been compiled and harnessed by a great number of establishments to execute their legal activities. Establishments are legally bound to maintain the confidentiality and security of personal data. Hence it is a requirement to provide access logs for the personal information. Depending on the needs and capacity, personal data can be opened to the users via platforms such as file system, database and web service. Web service platform is a popular alternative since it is autonomous and can isolate the data source from the user. In this paper, the way to log personal data accessed via web service method has been discussed. As an alternative to classical method in which logs were recorded and saved by client applications, a different mechanism of forming a central audit log with API manager has been investigated. By forging a model policy to exemplify central logging method, its advantages and disadvantages have been explored. It has been concluded in the end that this model could be employed in centrally recording audit logs.

2019-10-23
Chen, Jing, Yao, Shixiong, Yuan, Quan, He, Kun, Ji, Shouling, Du, Ruiying.  2018.  CertChain: Public and Efficient Certificate Audit Based on Blockchain for TLS Connections. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :2060-2068.

In recent years, real-world attacks against PKI take place frequently. For example, malicious domains' certificates issued by compromised CAs are widespread, and revoked certificates are still trusted by clients. In spite of a lot of research to improve the security of SSL/TLS connections, there are still some problems unsolved. On one hand, although log-based schemes provided certificate audit service to quickly detect CAs' misbehavior, the security and data consistency of log servers are ignored. On the other hand, revoked certificates checking is neglected due to the incomplete, insecure and inefficient certificate revocation mechanisms. Further, existing revoked certificates checking schemes are centralized which would bring safety bottlenecks. In this paper, we propose a blockchain-based public and efficient audit scheme for TLS connections, which is called Certchain. Specially, we propose a dependability-rank based consensus protocol in our blockchain system and a new data structure to support certificate forward traceability. Furthermore, we present a method that utilizes dual counting bloom filter (DCBF) with eliminating false positives to achieve economic space and efficient query for certificate revocation checking. The security analysis and experimental results demonstrate that CertChain is suitable in practice with moderate overhead.

Madala, D S V, Jhanwar, Mahabir Prasad, Chattopadhyay, Anupam.  2018.  Certificate Transparency Using Blockchain. 2018 IEEE International Conference on Data Mining Workshops (ICDMW). :71-80.

The security of web communication via the SSL/TLS protocols relies on safe distributions of public keys associated with web domains in the form of X.509 certificates. Certificate authorities (CAs) are trusted third parties that issue these certificates. However, the CA ecosystem is fragile and prone to compromises. Starting with Google's Certificate Transparency project, a number of research works have recently looked at adding transparency for better CA accountability, effectively through public logs of all certificates issued by certification authorities, to augment the current X.509 certificate validation process into SSL/TLS. In this paper, leveraging recent progress in blockchain technology, we propose a novel system, called CTB, that makes it impossible for a CA to issue a certificate for a domain without obtaining consent from the domain owner. We further make progress to equip CTB with certificate revocation mechanism. We implement CTB using IBM's Hyperledger Fabric blockchain platform. CTB's smart contract, written in Go, is provided for complete reference.

2018-11-14
Wang, G., Sun, Y., He, Q., Xin, G., Wang, B..  2018.  A Content Auditing Method of IPsec VPN. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). :634–639.

As one of the most commonly used protocols in VPN technology, IPsec has many advantages. However, certain difficulties are posed to the audit work by the protection of in-formation. In this paper, we propose an audit method via man-in-the-middle mechanism, and design a prototype system with DPDK technology. Experiments are implemented in an IPv4 network environment, using default configuration of IPsec VPN configured with known PSK, on operating systems such as windows 7, windows 10, Android and iOS. Experimental results show that the prototype system can obtain the effect of content auditing well without affecting the normal communication between IPsec VPN users.

2019-05-01
Barrere, M., Hankin, C., Barboni, A., Zizzo, G., Boem, F., Maffeis, S., Parisini, T..  2018.  CPS-MT: A Real-Time Cyber-Physical System Monitoring Tool for Security Research. 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :240–241.

Monitoring systems are essential to understand and control the behaviour of systems and networks. Cyber-physical systems (CPS) are particularly delicate under that perspective since they involve real-time constraints and physical phenomena that are not usually considered in common IT solutions. Therefore, there is a need for publicly available monitoring tools able to contemplate these aspects. In this poster/demo, we present our initiative, called CPS-MT, towards a versatile, real-time CPS monitoring tool, with a particular focus on security research. We first present its architecture and main components, followed by a MiniCPS-based case study. We also describe a performance analysis and preliminary results. During the demo, we will discuss CPS-MT's capabilities and limitations for security applications.

2019-12-16
Marashdih, Abdalla Wasef, Zaaba, Zarul Fitri, Suwais, Khaled.  2018.  Cross Site Scripting: Investigations in PHP Web Application. 2018 International Conference on Promising Electronic Technologies (ICPET). :25–30.

Web applications are now considered one of the common platforms to represent data and conducting service releases throughout the World Wide Web. A number of the most commonly utilised frameworks for web applications are written in PHP. They became main targets because a vast number of servers are running these applications throughout the world. This increase in web application utilisation has made it more attractive to both users and hackers. According to the latest web security reports and research, cross site scripting (XSS) is the most popular vulnerability in PHP web application. XSS is considered an injection type of attack, which results in the theft of sensitive data, cookies, and sessions. Several tools and approaches have focused on detecting this kind of vulnerability in PHP source code. However, it is still a current problem in PHP web applications. This paper describes the popularity of PHP technology among other technologies, and highlight the approaches used to detect the most common vulnerabilities on PHP web applications, which is XSS. In addition, the discussion and the conclusion with future direction of research within this domain are highlighted.

2019-07-01
Zabetian-Hosseini, A., Mehrizi-Sani, A., Liu, C..  2018.  Cyberattack to Cyber-Physical Model of Wind Farm SCADA. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society. :4929–4934.

In recent years, there has been a significant increase in wind power penetration into the power system. As a result, the behavior of the power system has become more dependent on wind power behavior. Supervisory control and data acquisition (SCADA) systems responsible for monitoring and controlling wind farms often have vulnerabilities that make them susceptible to cyberattacks. These vulnerabilities allow attackers to exploit and intrude in the wind farm SCADA system. In this paper, a cyber-physical system (CPS) model for the information and communication technology (ICT) model of the wind farm SCADA system integrated with SCADA of the power system is proposed. Cybersecurity of this wind farm SCADA system is discussed. Proposed cyberattack scenarios on the system are modeled and the impact of these cyberattacks on the behavior of the power systems on the IEEE 9-bus modified system is investigated. Finally, an anomaly attack detection algorithm is proposed to stop the attack of tripping of all wind farms. Case studies validate the performance of the proposed CPS model of the test system and the attack detection algorithm.

2019-12-18
M, Suchitra, S M, Renuka, Sreerekha, Lingaraj K..  2018.  DDoS Prevention Using D-PID. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :453-457.

In recent years, the attacks on systems have increased and among such attack is Distributed Denial of Service (DDoS) attack. The path identifiers (PIDs) used for inter-domain routing are static, which makes it easier the attack easier. To address this vulnerability, this paper addresses the usage of Dynamic Path Identifiers (D-PIDs) for routing. The PID of inter-domain path connector is kept oblivious and changes dynamically, thus making it difficult to attack the system. The prototype designed with major components like client, server and router analyses the outcome of D-PID usage instead of PIDs. The results show that, DDoS attacks can be effectively prevented if Dynamic Path Identifiers (D-PIDs) are used instead of Static Path Identifiers (PIDs).

Misono, Masanori, Yoshida, Kaito, Hwang, Juho, Shinagawa, Takahiro.  2018.  Distributed Denial of Service Attack Prevention at Source Machines. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :488-495.

Distributed denial of service (DDoS) attacks is a serious cyberattack that exhausts target machine's processing capacity by sending a huge number of packets from hijacked machines. To minimize resource consumption caused by DDoS attacks, filtering attack packets at source machines is the best approach. Although many studies have explored the detection of DDoS attacks, few studies have proposed DDoS attack prevention schemes that work at source machines. We propose a reliable, lightweight, transparent, and flexible DDoS attack prevention scheme that works at source machines. In this scheme, we employ a hypervisor with a packet filtering mechanism on each managed machine to allow the administrator to easily and reliably suppress packet transmissions. To make the proposed scheme lightweight and transparent, we exploit a thin hypervisor that allows pass-through access to hardware (except for network devices) from the operating system, thereby reducing virtualization overhead and avoiding compromising user experience. To make the proposed scheme flexible, we exploit a configurable packet filtering mechanism with a guaranteed safe code execution mechanism that allows the administrator to provide a filtering policy as executable code. In this study, we implemented the proposed scheme using BitVisor and the Berkeley Packet Filter. Experimental results show that the proposed scheme can suppress arbitrary packet transmissions with negligible latency and throughput overhead compared to a bare metal system without filtering mechanisms.