Biblio

Found 104 results

Filters: Keyword is Fuzzy logic  [Clear All Filters]
2022-05-10
Salaou, Allassane Issa, Ghomari, Abdelghani.  2021.  Fuzzy ontology-based complex and uncertain video surveillance events recognition. 2021 International Conference on Information Systems and Advanced Technologies (ICISAT). :1–5.

Nowadays, video surveillance systems are part of our daily life, because of their role in ensuring the security of goods and people this generates a huge amount of video data. Thus, several research works based on the ontology paradigm have tried to develop an efficient system to index and search precisely a very large volume of videos. Due to their semantic expressiveness, ontologies are undoubtedly very much in demand in recent years in the field of video surveillance to overcome the problem of the semantic gap between the interpretation of the data extracted from the low level and the high-level semantics of the video. Despite its good expressiveness of semantics, a classical ontology may not be sufficient for good handling of uncertainty, which is however commonly present in the video surveillance domain, hence the need to consider a new ontological approach that will better represent uncertainty. Fuzzy logic is recognized as a powerful tool for dealing with vague, incomplete, imperfect, or uncertain data or information. In this work, we develop a new ontological approach based on fuzzy logic. All the relevant fuzzy concepts such as Video\_Objects, Video\_Events, Video\_Sequences, that could appear in a video surveillance domain are well represented with their fuzzy Ontology DataProperty and the fuzzy relations between them (Ontology ObjectProperty). To achieve this goal, the new fuzzy video surveillance ontology is implemented using the fuzzy ontology web language 2 (fuzzy owl2) which is an extension of the standard semantic web language, ontology web language 2 (owl2).

2022-09-16
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla, Mohamed, Amr, Guizani, Mohsen.  2021.  A Robust Protocol for Smart eHealthcare based on Elliptic Curve Cryptography and Fuzzy logic in IoT. 2021 IEEE Globecom Workshops (GC Wkshps). :1—6.

Emerging technologies change the qualities of modern healthcare by employing smart systems for patient monitoring. To well use the data surrounding the patient, tiny sensing devices and smart gateways are involved. These sensing systems have been used to collect and analyze the real-time data remotely in Internet of Medical Thinks (IoM). Since the patient sensed information is so sensitive, the security and privacy of medical data are becoming challenging problem in IoM. It is then important to ensure the security, privacy and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for the IoM. In this paper, in order to improve the authentication and communications in health care applications, we present a novel secure and anonymous authentication scheme. We will use elliptic curve cryptography (ECC) with random numbers generated by fuzzy logic. We simulate IoM scheme using network simulator 3 (NS3) and we employ optimized link state routing protocol (OLSR) algorithm and ECC at each node of the network. We apply some attack algorithms such as Pollard’s ρ and Baby-step Giant-step to evaluate the vulnerability of the proposed scheme.

Almseidin, Mohammad, Al-Sawwa, Jamil, Alkasassbeh, Mouhammd.  2021.  Anomaly-based Intrusion Detection System Using Fuzzy Logic. 2021 International Conference on Information Technology (ICIT). :290—295.
Recently, the Distributed Denial of Service (DDOS) attacks has been used for different aspects to denial the number of services for the end-users. Therefore, there is an urgent need to design an effective detection method against this type of attack. A fuzzy inference system offers the results in a more readable and understandable form. This paper introduces an anomaly-based Intrusion Detection (IDS) system using fuzzy logic. The fuzzy logic inference system implemented as a detection method for Distributed Denial of Service (DDOS) attacks. The suggested method was applied to an open-source DDOS dataset. Experimental results show that the anomaly-based Intrusion Detection system using fuzzy logic obtained the best result by utilizing the InfoGain features selection method besides the fuzzy inference system, the results were 91.1% for the true-positive rate and 0.006% for the false-positive rate.
2022-01-10
Alamaniotis, Miltiadis.  2021.  Fuzzy Integration of Kernel-Based Gaussian Processes Applied to Anomaly Detection in Nuclear Security. 2021 12th International Conference on Information, Intelligence, Systems Applications (IISA). :1–4.
Advances in artificial intelligence (AI) have provided a variety of solutions in several real-world complex problems. One of the current trends contains the integration of various AI tools to improve the proposed solutions. The question that has to be revisited is how tools may be put together to form efficient systems suitable for the problem at hand. This paper frames itself in the area of nuclear security where an agent uses a radiation sensor to survey an area for radiological threats. The main goal of this application is to identify anomalies in the measured data that designate the presence of nuclear material that may consist of a threat. To that end, we propose the integration of two kernel modeled Gaussian processes (GP) by using a fuzzy inference system. The GP models utilize different types of information to make predictions of the background radiation contribution that will be used to identify an anomaly. The integration of the prediction of the two GP models is performed with means of fuzzy rules that provide the degree of existence of anomalous data. The proposed system is tested on a set of real-world gamma-ray spectra taken with a low-resolution portable radiation spectrometer.
2021-12-22
Poli, Jean-Philippe, Ouerdane, Wassila, Pierrard, Régis.  2021.  Generation of Textual Explanations in XAI: The Case of Semantic Annotation. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Semantic image annotation is a field of paramount importance in which deep learning excels. However, some application domains, like security or medicine, may need an explanation of this annotation. Explainable Artificial Intelligence is an answer to this need. In this work, an explanation is a sentence in natural language that is dedicated to human users to provide them clues about the process that leads to the decision: the labels assignment to image parts. We focus on semantic image annotation with fuzzy logic that has proven to be a useful framework that captures both image segmentation imprecision and the vagueness of human spatial knowledge and vocabulary. In this paper, we present an algorithm for textual explanation generation of the semantic annotation of image regions.
2022-09-16
Hu, Xiaoyan, Li, Yuanxin.  2021.  Event-Triggered Adaptive Fuzzy Asymptotic Tracking Control for Single Link Robot Manipulator with Prescribed Performance. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :144—149.
In this paper, the adaptive event-triggered asymptotic tracking control with guaranteed performance for a single link robot manipulator (SLRM) system driven by the brush DC motor is studied. Fuzzy logic systems (FLS) is used to approximate unknown nonlinear functions. By introducing a finite time performance function (FTPF), the tracking error of the system can converge to the compact set of the origin in finite time. In addition, by introducing the smooth function and some positive integral functions, combined with the boundary estimation method and adaptive backstepping technique, the asymptotic tracking control of the system is realized. Meanwhile, event-triggered mechanism is introduced to reduce the network resources of the system. Finally, a practical example is given to prove the effectiveness of the theoretical research.
2021-12-20
Wang, Libin, Wang, Huanqing, Liu, Peter Xiaoping.  2021.  Observer-Based Fuzzy Adaptive Command Filtering Finite-Time Control of Stochastic Nonlinear Systems. 2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC). :1–6.
The output feedback problem of finite-time command filtering for nonlinear systems with random disturbance is addressed in this paper. This is the first time that command filtering and output feedback are integrated so that a nonlinear system with random disturbance converge rapidly in finite time. The uncertain functions and unmeasured states are estimated by the fuzzy logic system (FLS) and nonlinear state observer, respectively. Based on the adaptive framework, command filtering technology is applied to mitigate the problem of ``term explosion'' inherent in traditional methods, and error compensation mechanism is considered to improve the control performance of the system. The developed output feedback controller ensures the boundedness of all signals in the stochastic system within a finite time, and the convergence residual can converge to a small region. The validity of this scheme is well verified in a numerical example.
2021-03-01
Khoukhi, L., Khatoun, R..  2020.  Safe Traffic Adaptation Model in Wireless Mesh Networks. 2020 4th Cyber Security in Networking Conference (CSNet). :1–4.
Wireless mesh networks (WMNs) are dynamically self-organized and self-configured technology ensuring efficient connection to Internet. Such networks suffer from many issues, like lack of performance efficiency when huge amount of traffic are injected inside the networks. To deal with such issues, we propose in this paper an adapted fuzzy framework; by monitoring the rate of change in queue length in addition to the current length of the queue, we are able to provide a measure of future queue state. Furthermore, by using explicit rate messages we can make node sources more responsive to unexpected changes in the network traffic load. The simulation results show the efficiency of the proposed model.
2021-11-29
Arunagirinathan, Paranietharan, Venayagamoorthy, Ganesh K..  2020.  Situational Awareness of Power System Stabilizers’ Performance in Energy Control Centers. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
Undamped power system oscillations are detrimental to stable and security of the electric grid. Historically, poorly damped low frequency rotor oscillations have caused system blackouts or brownouts. It is required to monitor the oscillation damping controllers such as power system stabilizers' (PSS) performance at energy control centers as well as at power plant control centers. Phasor measurement units (PMUs) based time response and frequency response information on PSS performance is collected. A fuzzy logic system is developed to combine the time and frequency response information to derive the situational awareness on PSS performance on synchronous generator's oscillation(s). A two-area four-machine benchmark power system is simulated on a real-time digital simulator platform. Fuzzy logic system developed is evaluated for different system disturbances. Situational awareness on PSS performance on synchronous generator's oscillation(s) allows the control center operator to enhance the power system operation more stable and secure.
2021-09-21
Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
2021-03-29
Khorev, P. B., Zheltov, M. I..  2020.  Assessing Information Risks When Using Web Applications Using Fuzzy Logic. 2020 V International Conference on Information Technologies in Engineering Education ( Inforino ). :1—4.

The article looks at information risk concepts, how it is assessed, web application vulnerabilities and how to identify them. A prototype web application vulnerability scanner has been developed with a function of information risk assessment based on fuzzy logic. The software developed is used in laboratory sessions on data protection discipline.

2021-01-18
Kushnir, M., Kosovan, H., Kroialo, P., Komarnytskyy, A..  2020.  Encryption of the Images on the Basis of Two Chaotic Systems with the Use of Fuzzy Logic. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :610–613.

Recently, new perspective areas of chaotic encryption have evolved, including fuzzy logic encryption. The presented work proposes an image encryption system based on two chaotic mapping that uses fuzzy logic. The paper also presents numerical calculations of some parameters of statistical analysis, such as, histogram, entropy of information and correlation coefficient, which confirm the efficiency of the proposed algorithm.

2021-06-01
Thakare, Vaishali Ravindra, Singh, K. John, Prabhu, C S R, Priya, M..  2020.  Trust Evaluation Model for Cloud Security Using Fuzzy Theory. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1–4.
Cloud computing is a new kind of computing model which allows users to effectively rent virtualized computing resources on pay as you go model. It offers many advantages over traditional models in IT industries and healthcare as well. However, there is lack of trust between CSUs and CSPs to prevent the extensive implementation of cloud technologies amongst industries. Different models are developed to overcome the uncertainty and complexity between CSP and CSU regarding suitability. Several researchers focused on resource optimization, scheduling and service dependability in cloud computing by using fuzzy logic. But, data storage and security using fuzzy logic have been ignored. In this paper, a trust evaluation model is proposed for cloud computing security using fuzzy theory. Authors evaluates how fuzzy logic increases efficiency in trust evaluation. To validate the effectiveness of proposed FTEM, authors presents a case study of healthcare organization.
2020-12-14
Arjoune, Y., Salahdine, F., Islam, M. S., Ghribi, E., Kaabouch, N..  2020.  A Novel Jamming Attacks Detection Approach Based on Machine Learning for Wireless Communication. 2020 International Conference on Information Networking (ICOIN). :459–464.
Jamming attacks target a wireless network creating an unwanted denial of service. 5G is vulnerable to these attacks despite its resilience prompted by the use of millimeter wave bands. Over the last decade, several types of jamming detection techniques have been proposed, including fuzzy logic, game theory, channel surfing, and time series. Most of these techniques are inefficient in detecting smart jammers. Thus, there is a great need for efficient and fast jamming detection techniques with high accuracy. In this paper, we compare the efficiency of several machine learning models in detecting jamming signals. We investigated the types of signal features that identify jamming signals, and generated a large dataset using these parameters. Using this dataset, the machine learning algorithms were trained, evaluated, and tested. These algorithms are random forest, support vector machine, and neural network. The performance of these algorithms was evaluated and compared using the probability of detection, probability of false alarm, probability of miss detection, and accuracy. The simulation results show that jamming detection based random forest algorithm can detect jammers with a high accuracy, high detection probability and low probability of false alarm.
2021-03-29
Johanyák, Z. C..  2020.  Fuzzy Logic based Network Intrusion Detection Systems. 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI). :15—16.

Plenary Talk Our everyday life is more and more dependent on electronic communication and network connectivity. However, the threats of attacks and different types of misuse increase exponentially with the expansion of computer networks. In order to alleviate the problem and to identify malicious activities as early as possible Network Intrusion Detection Systems (NIDSs) have been developed and intensively investigated. Several approaches have been proposed and applied so far for these systems. It is a common challenge in this field that often there are no crisp boundaries between normal and abnormal network traffic, there are noisy or inaccurate data and therefore the investigated traffic could represent both attack and normal communication. Fuzzy logic based solutions could be advantageous owing to their capability to define membership levels in different classes and to do different operations with results ensuring reduced false positive and false negative classification compared to other approaches. In this presentation, after a short introduction of NIDSs a survey will be done on typical fuzzy logic based solutions followed by a detailed description of a fuzzy rule interpolation based IDS. The whole development process, i.e. data preprocessing, feature extraction, rule base generation steps are covered as well.

Roy, S., Dey, D., Saha, M., Chatterjee, K., Banerjee, S..  2020.  Implementation of Fuzzy Logic Control in Predictive Analysis and Real Time Monitoring of Optimum Crop Cultivation : Fuzzy Logic Control In Optimum Crop Cultivation. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :6—11.

In this article, the writers suggested a scheme for analyzing the optimum crop cultivation based on Fuzzy Logic Network (Implementation of Fuzzy Logic Control in Predictive Analysis and Real Time Monitoring of Optimum Crop Cultivation) knowledge. The Fuzzy system is Fuzzy Logic's set. By using the soil, temperature, sunshine, precipitation and altitude value, the scheme can calculate the output of a certain crop. By using this scheme, the writers hope farmers can boost f arm output. This, thus will have an enormous effect on alleviating economical deficiency, strengthening rate of employment, the improvement of human resources and food security.

2021-03-01
D’Alterio, P., Garibaldi, J. M., John, R. I..  2020.  Constrained Interval Type-2 Fuzzy Classification Systems for Explainable AI (XAI). 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
In recent year, there has been a growing need for intelligent systems that not only are able to provide reliable classifications but can also produce explanations for the decisions they make. The demand for increased explainability has led to the emergence of explainable artificial intelligence (XAI) as a specific research field. In this context, fuzzy logic systems represent a promising tool thanks to their inherently interpretable structure. The use of a rule-base and linguistic terms, in fact, have allowed researchers to create models that are able to produce explanations in natural language for each of the classifications they make. So far, however, designing systems that make use of interval type-2 (IT2) fuzzy logic and also give explanations for their outputs has been very challenging, partially due to the presence of the type-reduction step. In this paper, it will be shown how constrained interval type-2 (CIT2) fuzzy sets represent a valid alternative to conventional interval type-2 sets in order to address this issue. Through the analysis of two case studies from the medical domain, it is shown how explainable CIT2 classifiers are produced. These systems can explain which rules contributed to the creation of each of the endpoints of the output interval centroid, while showing (in these examples) the same level of accuracy as their IT2 counterpart.
2021-01-18
Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J..  2020.  Embedding Fuzzy Rules with YARA Rules for Performance Optimisation of Malware Analysis. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–7.
YARA rules utilises string or pattern matching to perform malware analysis and is one of the most effective methods in use today. However, its effectiveness is dependent on the quality and quantity of YARA rules employed in the analysis. This can be managed through the rule optimisation process, although, this may not necessarily guarantee effective utilisation of YARA rules and its generated findings during its execution phase, as the main focus of YARA rules is in determining whether to trigger a rule or not, for a suspect sample after examining its rule condition. YARA rule conditions are Boolean expressions, mostly focused on the binary outcome of the malware analysis, which may limit the optimised use of YARA rules and its findings despite generating significant information during the execution phase. Therefore, this paper proposes embedding fuzzy rules with YARA rules to optimise its performance during the execution phase. Fuzzy rules can manage imprecise and incomplete data and encompass a broad range of conditions, which may not be possible in Boolean logic. This embedding may be more advantageous when the YARA rules become more complex, resulting in multiple complex conditions, which may not be processed efficiently utilising Boolean expressions alone, thus compromising effective decision-making. This proposed embedded approach is applied on a collected malware corpus and is tested against the standard and enhanced YARA rules to demonstrate its success.
2021-03-29
Bodhe, A., Sangale, A..  2020.  Network Parameter Analysis; ad hoc WSN for Security Protocol with Fuzzy Logic. 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA). :960—963.

The wireless communication has become very vast, important and easy to access nowadays because of less cost associated and easily available mobile devices. It creates a potential threat for the community while accessing some secure information like banking passwords on the unsecured network. This proposed research work expose such a potential threat such as Rogue Access Point (RAP) detection using soft computing prediction tool. Fuzzy logic is used to implement the proposed model to identify the presence of RAP existence in the network.

2020-12-28
Murugan, S., Jeyakarthic, M..  2020.  An Energy Efficient Security Aware Clustering approach using Fuzzy Logic for Mobile Adhoc Networks. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :551—555.

Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.

2021-03-09
Le, T. V., Huan, T. T..  2020.  Computational Intelligence Towards Trusted Cloudlet Based Fog Computing. 2020 5th International Conference on Green Technology and Sustainable Development (GTSD). :141—147.

The current trend of IoT user is toward the use of services and data externally due to voluminous processing, which demands resourceful machines. Instead of relying on the cloud of poor connectivity or a limited bandwidth, the IoT user prefers to use a cloudlet-based fog computing. However, the choice of cloudlet is solely dependent on its trust and reliability. In practice, even though a cloudlet possesses a required trusted platform module (TPM), we argue that the presence of a TPM is not enough to make the cloudlet trustworthy as the TPM supports only the primitive security of the bootstrap. Besides uncertainty in security, other uncertain conditions of the network (e.g. network bandwidth, latency and expectation time to complete a service request for cloud-based services) may also prevail for the cloudlets. Therefore, in order to evaluate the trust value of multiple cloudlets under uncertainty, this paper broadly proposes the empirical process for evaluation of trust. This will be followed by a measure of trust-based reputation of cloudlets through computational intelligence such as fuzzy logic and ant colony optimization (ACO). In the process, fuzzy logic-based inference and membership evaluation of trust are presented. In addition, ACO and its pheromone communication across different colonies are being modeled with multiple cloudlets. Finally, a measure of affinity or popular trust and reputation of the cloudlets is also proposed. Together with the context of application under multiple cloudlets, the computationally intelligent approaches have been investigated in terms of performance. Hence the contribution is subjected towards building a trusted cloudlet-based fog platform.

2021-03-29
Normatov, S., Rakhmatullaev, M..  2020.  Expert system with Fuzzy logic for protecting Scientific Information Resources. 2020 International Conference on Information Science and Communications Technologies (ICISCT). :1—4.

Analysis of the state of development of research on the protection of valuable scientific and educational databases, library resources, information centers, publishers show the importance of information security, especially in corporate information networks and systems for data exchange. Corporate library networks include dozens and even hundreds of libraries for active information exchange, and they (libraries) are equipped with information security tools to varying degrees. The purpose of the research is to create effective methods and tools to protect the databases of the scientific and educational resources from unauthorized access in libraries and library networks using fuzzy logic methods.

Shaout, A., Schmidt, N..  2020.  Keystroke Identifier Using Fuzzy Logic to Increase Password Security. 2020 21st International Arab Conference on Information Technology (ACIT). :1—8.

Cybersecurity is a major issue today. It is predicted that cybercrime will cost the world \$6 trillion annually by 2021. It is important to make logins secure as well as to make advances in security in order to catch cybercriminals. This paper will design and create a device that will use Fuzzy logic to identify a person by the rhythm and frequency of their typing. The device will take data from a user from a normal password entry session. This data will be used to make a Fuzzy system that will be able to identify the user by their typing speed. An application of this project could be used to make a more secure log-in system for a user. The log-in system would not only check that the correct password was entered but also that the rhythm of how the password was typed matched the user. Another application of this system could be used to help catch cybercriminals. A cybercriminal may have a certain rhythm at which they type at and this could be used like a fingerprint to help officials locate cybercriminals.

Ateş, Ç, Özdel, S., Anarim, E..  2020.  DDoS Detection Algorithm Based on Fuzzy Logic. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1—4.

While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.

2021-10-04
Xu, Yuanchen, Yang, Yingjie, He, Ying.  2020.  A Representation of Business Oriented Cyber Threat Intelligence and the Objects Assembly. 2020 10th International Conference on Information Science and Technology (ICIST). :105–113.
Cyber threat intelligence (CTI) is an effective approach to improving cyber security of businesses. CTI provides information of business contexts affected by cyber threats and the corresponding countermeasures. If businesses can identify relevant CTI, they can take defensive actions before the threats, described in the relevant CTI, take place. However, businesses still lack knowledge to help identify relevant CTI. Furthermore, information in real-world systems is usually vague, imprecise, inconsistent and incomplete. This paper defines a business object that is a business context surrounded by CTI. A business object models the connection knowledge for CTI onto the business. To assemble the business objects, this paper proposes a novel representation of business oriented CTI and a system used for constructing and extracting the business objects. Generalised grey numbers, fuzzy sets and rough sets are used for the representation, and set approximations are used for the extraction of the business objects. We develop a prototype of the system and use a case study to demonstrate how the system works. We then conclude the paper together with the future research directions.