Biblio
Nowadays, video surveillance systems are part of our daily life, because of their role in ensuring the security of goods and people this generates a huge amount of video data. Thus, several research works based on the ontology paradigm have tried to develop an efficient system to index and search precisely a very large volume of videos. Due to their semantic expressiveness, ontologies are undoubtedly very much in demand in recent years in the field of video surveillance to overcome the problem of the semantic gap between the interpretation of the data extracted from the low level and the high-level semantics of the video. Despite its good expressiveness of semantics, a classical ontology may not be sufficient for good handling of uncertainty, which is however commonly present in the video surveillance domain, hence the need to consider a new ontological approach that will better represent uncertainty. Fuzzy logic is recognized as a powerful tool for dealing with vague, incomplete, imperfect, or uncertain data or information. In this work, we develop a new ontological approach based on fuzzy logic. All the relevant fuzzy concepts such as Video\_Objects, Video\_Events, Video\_Sequences, that could appear in a video surveillance domain are well represented with their fuzzy Ontology DataProperty and the fuzzy relations between them (Ontology ObjectProperty). To achieve this goal, the new fuzzy video surveillance ontology is implemented using the fuzzy ontology web language 2 (fuzzy owl2) which is an extension of the standard semantic web language, ontology web language 2 (owl2).
Emerging technologies change the qualities of modern healthcare by employing smart systems for patient monitoring. To well use the data surrounding the patient, tiny sensing devices and smart gateways are involved. These sensing systems have been used to collect and analyze the real-time data remotely in Internet of Medical Thinks (IoM). Since the patient sensed information is so sensitive, the security and privacy of medical data are becoming challenging problem in IoM. It is then important to ensure the security, privacy and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for the IoM. In this paper, in order to improve the authentication and communications in health care applications, we present a novel secure and anonymous authentication scheme. We will use elliptic curve cryptography (ECC) with random numbers generated by fuzzy logic. We simulate IoM scheme using network simulator 3 (NS3) and we employ optimized link state routing protocol (OLSR) algorithm and ECC at each node of the network. We apply some attack algorithms such as Pollard’s ρ and Baby-step Giant-step to evaluate the vulnerability of the proposed scheme.
The article looks at information risk concepts, how it is assessed, web application vulnerabilities and how to identify them. A prototype web application vulnerability scanner has been developed with a function of information risk assessment based on fuzzy logic. The software developed is used in laboratory sessions on data protection discipline.
Recently, new perspective areas of chaotic encryption have evolved, including fuzzy logic encryption. The presented work proposes an image encryption system based on two chaotic mapping that uses fuzzy logic. The paper also presents numerical calculations of some parameters of statistical analysis, such as, histogram, entropy of information and correlation coefficient, which confirm the efficiency of the proposed algorithm.
Plenary Talk Our everyday life is more and more dependent on electronic communication and network connectivity. However, the threats of attacks and different types of misuse increase exponentially with the expansion of computer networks. In order to alleviate the problem and to identify malicious activities as early as possible Network Intrusion Detection Systems (NIDSs) have been developed and intensively investigated. Several approaches have been proposed and applied so far for these systems. It is a common challenge in this field that often there are no crisp boundaries between normal and abnormal network traffic, there are noisy or inaccurate data and therefore the investigated traffic could represent both attack and normal communication. Fuzzy logic based solutions could be advantageous owing to their capability to define membership levels in different classes and to do different operations with results ensuring reduced false positive and false negative classification compared to other approaches. In this presentation, after a short introduction of NIDSs a survey will be done on typical fuzzy logic based solutions followed by a detailed description of a fuzzy rule interpolation based IDS. The whole development process, i.e. data preprocessing, feature extraction, rule base generation steps are covered as well.
In this article, the writers suggested a scheme for analyzing the optimum crop cultivation based on Fuzzy Logic Network (Implementation of Fuzzy Logic Control in Predictive Analysis and Real Time Monitoring of Optimum Crop Cultivation) knowledge. The Fuzzy system is Fuzzy Logic's set. By using the soil, temperature, sunshine, precipitation and altitude value, the scheme can calculate the output of a certain crop. By using this scheme, the writers hope farmers can boost f arm output. This, thus will have an enormous effect on alleviating economical deficiency, strengthening rate of employment, the improvement of human resources and food security.
The wireless communication has become very vast, important and easy to access nowadays because of less cost associated and easily available mobile devices. It creates a potential threat for the community while accessing some secure information like banking passwords on the unsecured network. This proposed research work expose such a potential threat such as Rogue Access Point (RAP) detection using soft computing prediction tool. Fuzzy logic is used to implement the proposed model to identify the presence of RAP existence in the network.
Security awareness and energy efficiency are two crucial optimization issues present in MANET where the network topology gets adequately changed and is not predictable which affects the lifetime of the MANET. They are extensively analyzed to improvise the lifetime of the MANET. This paper concentrates on the design of an energy-efficient security-aware fuzzy-based clustering (SFLC) technique to make the network secure and energy-efficient. The selection of cluster heads (CHD) process using fuzzy logic (FL) involves the trust factor as an important input variable. Once the CHDs are elected successfully, clusters will be constructed and start to communication with one another as well as the base station (BS). The presented SFLC model is simulated using NS2 and the performance is validated in terms of energy, lifetime and computation time.
The current trend of IoT user is toward the use of services and data externally due to voluminous processing, which demands resourceful machines. Instead of relying on the cloud of poor connectivity or a limited bandwidth, the IoT user prefers to use a cloudlet-based fog computing. However, the choice of cloudlet is solely dependent on its trust and reliability. In practice, even though a cloudlet possesses a required trusted platform module (TPM), we argue that the presence of a TPM is not enough to make the cloudlet trustworthy as the TPM supports only the primitive security of the bootstrap. Besides uncertainty in security, other uncertain conditions of the network (e.g. network bandwidth, latency and expectation time to complete a service request for cloud-based services) may also prevail for the cloudlets. Therefore, in order to evaluate the trust value of multiple cloudlets under uncertainty, this paper broadly proposes the empirical process for evaluation of trust. This will be followed by a measure of trust-based reputation of cloudlets through computational intelligence such as fuzzy logic and ant colony optimization (ACO). In the process, fuzzy logic-based inference and membership evaluation of trust are presented. In addition, ACO and its pheromone communication across different colonies are being modeled with multiple cloudlets. Finally, a measure of affinity or popular trust and reputation of the cloudlets is also proposed. Together with the context of application under multiple cloudlets, the computationally intelligent approaches have been investigated in terms of performance. Hence the contribution is subjected towards building a trusted cloudlet-based fog platform.
Analysis of the state of development of research on the protection of valuable scientific and educational databases, library resources, information centers, publishers show the importance of information security, especially in corporate information networks and systems for data exchange. Corporate library networks include dozens and even hundreds of libraries for active information exchange, and they (libraries) are equipped with information security tools to varying degrees. The purpose of the research is to create effective methods and tools to protect the databases of the scientific and educational resources from unauthorized access in libraries and library networks using fuzzy logic methods.
Cybersecurity is a major issue today. It is predicted that cybercrime will cost the world \$6 trillion annually by 2021. It is important to make logins secure as well as to make advances in security in order to catch cybercriminals. This paper will design and create a device that will use Fuzzy logic to identify a person by the rhythm and frequency of their typing. The device will take data from a user from a normal password entry session. This data will be used to make a Fuzzy system that will be able to identify the user by their typing speed. An application of this project could be used to make a more secure log-in system for a user. The log-in system would not only check that the correct password was entered but also that the rhythm of how the password was typed matched the user. Another application of this system could be used to help catch cybercriminals. A cybercriminal may have a certain rhythm at which they type at and this could be used like a fingerprint to help officials locate cybercriminals.
While internet technologies are developing day by day, threats against them are increasing at the same speed. One of the most serious and common types of attacks is Distributed Denial of Service (DDoS) attacks. The DDoS intrusion detection approach proposed in this study is based on fuzzy logic and entropy. The network is modeled as a graph and graphics-based features are used to distinguish attack traffic from non-attack traffic. Fuzzy clustering is applied based on these properties to indicate the tendency of IP addresses or port numbers to be in the same cluster. Based on this uncertainty, attack and non-attack traffic were modeled. The detection stage uses the fuzzy relevance function. This algorithm was tested on real data collected from Boğaziçi University network.