Biblio
Various studies have been performed to explore the feasibility of detection of web-based attacks by machine learning techniques. False-positive and false-negative results have been reported as a major issue to be addressed to make machine learning-based detection and prevention of web-based attacks reliable and trustworthy. In our research, we tried to identify and address the root cause of the false-positive and false-negative results. In our experiment, we used the CSIC 2010 HTTP dataset, which contains the generated traffic targeted to an e-commerce web application. Our experimental results demonstrate that applying the proposed fine-tuned feature set extraction results in improved detection and classification of web-based attacks for all tested machine learning algorithms. The performance of the machine learning algorithm in the detection of attacks was evaluated by the Precision, Recall, Accuracy, and F-measure metrics. Among three tested algorithms, the J48 decision tree algorithm provided the highest True Positive rate, Precision, and Recall.
Due to the wide adoption of IoT/CPS systems, embedded devices (IoT frontends) become increasingly connected and mission-critical, which in turn has attracted advanced attacks (e.g., control-flow hijacks and data-only attacks). Unfortunately, IoT backends (e.g., remote controllers or in-cloud services) are unable to detect if such attacks have happened while receiving data, service requests, or operation status from IoT devices (remotely deployed embedded devices). As a result, currently, IoT backends are forced to blindly trust the IoT devices that they interact with.To fill this void, we first formulate a new security property for embedded devices, called "Operation Execution Integrity" or OEI. We then design and build a system, OAT, that enables remote OEI attestation for ARM-based bare-metal embedded devices. Our formulation of OEI captures the integrity of both control flow and critical data involved in an operation execution. Therefore, satisfying OEI entails that an operation execution is free of unexpected control and data manipulations, which existing attestation methods cannot check. Our design of OAT strikes a balance between prover's constraints (embedded devices' limited computing power and storage) and verifier's requirements (complete verifiability and forensic assistance). OAT uses a new control-flow measurement scheme, which enables lightweight and space-efficient collection of measurements (97% space reduction from the trace-based approach). OAT performs the remote control-flow verification through abstract execution, which is fast and deterministic. OAT also features lightweight integrity checking for critical data (74% less instrumentation needed than previous work). Our security analysis shows that OAT allows remote verifiers or IoT backends to detect both controlflow hijacks and data-only attacks that affect the execution of operations on IoT devices. In our evaluation using real embedded programs, OAT incurs a runtime overhead of 2.7%.
This paper studies the physical layer security (PLS) of a vehicular network employing a reconfigurable intelligent surface (RIS). RIS technologies are emerging as an important paradigm for the realisation of smart radio environments, where large numbers of small, low-cost and passive elements, reflect the incident signal with an adjustable phase shift without requiring a dedicated energy source. Inspired by the promising potential of RIS-based transmission, we investigate two vehicular network system models: One with vehicle-to-vehicle communication with the source employing a RIS-based access point, and the other model in the form of a vehicular adhoc network (VANET), with a RIS-based relay deployed on a building. Both models assume the presence of an eavesdropper to investigate the average secrecy capacity of the considered systems. Monte-Carlo simulations are provided throughout to validate the results. The results show that performance of the system in terms of the secrecy capacity is affected by the location of the RIS-relay and the number of RIS cells. The effect of other system parameters such as source power and eavesdropper distances are also studied.
Object recognition with the help of outdoor video surveillance cameras is an important task in the context of ensuring the security at enterprises, public places and even private premises. There have long existed systems that allow detecting moving objects in the image sequence from a video surveillance system. Such a system is partially considered in this research. It detects moving objects using a background model, which has certain problems. Due to this some objects are missed or detected falsely. We propose to combine the moving objects detection results with the classification, using a deep neural network. This will allow determining whether a detected object belongs to a certain class, sorting out false detections, discarding the unnecessary ones (sometimes individual classes are unwanted), to divide detected people into the employees in the uniform and all others, etc. The authors perform a network training in the Keras developer-friendly environment that provides for quick building, changing and training of network architectures. The performance of the Keras integration into a video analysis system, using direct Python script execution techniques, is between 6 and 52 ms, while the precision is between 59.1% and 97.2% for different architectures. The integration, made by freezing a selected network architecture with weights, is selected after testing. After that, frozen architecture can be imported into video analysis using the TensorFlow interface for C++. The performance of such type of integration is between 3 and 49 ms. The precision is between 63.4% and 97.8% for different architectures.
The paper presents a comprehensive model of cybersecurity threats for a system of autonomous and remotely controlled vehicles (AV) in the environment of a smart city. The main focus in the security context is given to the “integrity” property. That property is of higher importance for industrial control systems in comparison with other security properties (availability and confidentiality). The security graph, which is part of the model, is dynamic, and, in real cases, its analysis may require significant computing resources for AV systems with a large number of assets and connections. The simplified example of the security graph for the AV system is presented.
Network adversaries, such as malicious transit autonomous systems (ASes), have been shown to be capable of partitioning the Bitcoin's peer-to-peer network via routing-level attacks; e.g., a network adversary exploits a BGP vulnerability and performs a prefix hijacking attack (viz. Apostolaki et al. [3]). Due to the nature of BGP operation, such a hijacking is globally observable and thus enables immediate detection of the attack and the identification of the perpetrator. In this paper, we present a stealthier attack, which we call the EREBUS attack, that partitions the Bitcoin network without any routing manipulations, which makes the attack undetectable to control-plane and even to data-plane detectors. The novel aspect of EREBUS is that it makes the adversary AS a natural man-in-the-middle network of all the peer connections of one or more targeted Bitcoin nodes by patiently influencing the targeted nodes' peering decision. We show that affecting the peering decision of a Bitcoin node, which is believed to be infeasible after a series of bug patches against the earlier Eclipse attack [29], is possible for the network adversary that can use abundant network address resources (e.g., spoofing millions of IP addresses in many other ASes) reliably for an extended period of time at a negligible cost. The EREBUS attack is readily available for large ASes, such as Tier-1 and large Tier-2 ASes, against the vast majority of 10K public Bitcoin nodes with only about 520 bit/s of attack traffic rate per targeted Bitcoin node and a modest (e.g., 5-6 weeks) attack execution period. The EREBUS attack can be mounted by nation-state adversaries who would be willing to execute sophisticated attack strategies patiently to compromise cryptocurrencies (e.g., control the consensus, take down a cryptocurrency, censor transactions). As the attack exploits the topological advantage of being a network adversary but not the specific vulnerabilities of Bitcoin core, no quick patches seem to be available. We discuss that some naive solutions (e.g., whitelisting, rate-limiting) are ineffective and third-party proxy solutions may worsen the Bitcoin's centralization problem. We provide some suggested modifications to the Bitcoin core and show that they effectively make the EREBUS attack significantly harder; yet, their non-trivial changes to the Bitcoin's network operation (e.g., peering dynamics, propagation delays) should be examined thoroughly before their wide deployment.
The objective of this paper is to propose a model of a distributed intrusion detection system based on the multi-agent paradigm and the distributed file system (HDFS). Multi-agent systems (MAS) are very suitable to intrusion detection systems as they can address the issue of geographic data security in terms of autonomy, distribution and performance. The proposed system is based on a set of autonomous agents that cooperate and collaborate with each other to effectively detect intrusions and suspicious activities that may impact geographic information systems. Our system allows the detection of known and unknown computer attacks without any human intervention (Security Experts) unlike traditional intrusion detection systems that rely on knowledge bases as a mechanism to detect known attacks. The proposed model allows a real time detection of known and unknown attacks within large networks hosting geographic data.
Wireless Sensor Network (WSN) is a heterogeneous type of network consisting of scattered sensor nodes and working together for data collection, processing, and transmission functions[1], [2]. Because WSN is widely used in vital matters, aspects of its security must also be considered. There are many types of attacks that might be carried out to disrupt WSN networks. The methods of attack that exist in WSN include jamming attack, tampering, Sybil attack, wormhole attack, hello flood attack, and, blackhole attack[3]. Blackhole attacks are one of the most dangerous attacks on WSN networks. Enhanced Check Agent method is designed to detect black hole attacks by sending a checking agent to record nodes that are considered black okay. The implementation will be tested right on a wireless sensor network using ZigBee technology. Network topology uses a mesh where each node can have more than one routing table[4]. The Enhanced Check Agent method can increase throughput to 100 percent.