Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2022-12-09
Doebbert, Thomas Robert, Fischer, Florian, Merli, Dominik, Scholl, Gerd.  2022.  On the Security of IO-Link Wireless Communication in the Safety Domain. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—8.

Security is an essential requirement of Industrial Control System (ICS) environments and its underlying communication infrastructure. Especially the lowest communication level within Supervisory Control and Data Acquisition (SCADA) systems - the field level - commonly lacks security measures.Since emerging wireless technologies within field level expose the lowest communication infrastructure towards potential attackers, additional security measures above the prevalent concept of air-gapped communication must be considered.Therefore, this work analyzes security aspects for the wireless communication protocol IO-Link Wireless (IOLW), which is commonly used for sensor and actuator field level communication. A possible architecture for an IOLW safety layer has already been presented recently [1].In this paper, the overall attack surface of IOLW within its typical environment is analyzed and attack preconditions are investigated to assess the effectiveness of different security measures. Additionally, enhanced security measures are evaluated for the communication systems and the results are summarized. Also, interference of security measures and functional safety principles within the communication are investigated, which do not necessarily complement one another but may also have contradictory requirements.This work is intended to discuss and propose enhancements of the IOLW standard with additional security considerations in future implementations.

2022-12-20
Siewert, Hendrik, Kretschmer, Martin, Niemietz, Marcus, Somorovsky, Juraj.  2022.  On the Security of Parsing Security-Relevant HTTP Headers in Modern Browsers. 2022 IEEE Security and Privacy Workshops (SPW). :342–352.

Web browsers are among the most important but also complex software solutions to access the web. It is therefore not surprising that web browsers are an attractive target for attackers. Especially in the last decade, security researchers and browser vendors have developed sandboxing mechanisms like security-relevant HTTP headers to tackle the problem of getting a more secure browser. Although the security community is aware of the importance of security-relevant HTTP headers, legacy applications and individual requests from different parties have led to possible insecure configurations of these headers. Even if specific security headers are configured correctly, conflicts in their functionalities may lead to unforeseen browser behaviors and vulnerabilities. Recently, the first work which analyzed duplicated headers and conflicts in headers was published by Calzavara et al. at USENIX Security [1]. The authors focused on inconsistent protections by using both, the HTTP header X-Frame-Options and the framing protection of the Content-Security-Policy.We extend their work by analyzing browser behaviors when parsing duplicated headers, conflicting directives, and values that do not conform to the defined ABNF metalanguage specification. We created an open-source testbed running over 19,800 test cases, at which nearly 300 test cases are executed in the set of 66 different browsers. Our work shows that browsers conform to the specification and behave securely. However, all tested browsers behave differently when it comes, for example, to parsing the Strict-Transport-Security header. Moreover, Chrome, Safari, and Firefox behave differently if the header contains a character, which is not allowed by the defined ABNF. This results in the protection mechanism being fully enforced, partially enforced, or not enforced and thus completely bypassable.

ISSN: 2770-8411

2023-03-31
Xing, Zhiyi.  2022.  Security Policy System for Cloud Computing Education Big Data: Test based on DDos Large-Scale Distributed Environment. 2022 International Conference on Inventive Computation Technologies (ICICT). :1107–1110.

The big data platform based on cloud computing realizes the storage, analysis and processing of massive data, and provides users with more efficient, accurate and intelligent Internet services. Combined with the characteristics of college teaching resource sharing platform based on cloud computing mode, the multi-faceted security defense strategy of the platform is studied from security management, security inspection and technical means. In the detection module, the optimization of the support vector machine is realized, the detection period is determined, the DDoS data traffic characteristics are extracted, and the source ID blacklist is established; the triggering of the defense mechanism in the defense module, the construction of the forwarder forwarding queue and the forwarder forwarding capability are realized. Reallocation.

ISSN: 2767-7788

2023-01-20
Yong, Li, Mu, Chen, ZaoJian, Dai, Lu, Chen.  2022.  Security situation awareness method of power mobile application based on big data architecture. 2022 5th International Conference on Data Science and Information Technology (DSIT). :1–6.

According to the characteristics of security threats and massive users in power mobile applications, a mobile application security situational awareness method based on big data architecture is proposed. The method uses open-source big data technology frameworks such as Kafka, Flink, Elasticsearch, etc. to complete the collection, analysis, storage and visual display of massive power mobile application data, and improve the throughput of data processing. The security situation awareness method of power mobile application takes the mobile terminal threat index as the core, divides the risk level for the mobile terminal, and predicts the terminal threat index through support vector machine regression algorithm (SVR), so as to construct the security profile of the mobile application operation terminal. Finally, through visualization services, various data such as power mobile applications and terminal assets, security operation statistics, security strategies, and alarm analysis are displayed to guide security operation and maintenance personnel to carry out power mobile application security monitoring and early warning, banning disposal and traceability analysis and other decision-making work. The experimental analysis results show that the method can meet the requirements of security situation awareness for threat assessment accuracy and response speed, and the related results have been well applied in a power company.

Leak, Matthew Haslett, Venayagamoorthy, Ganesh Kumar.  2022.  Situational Awareness of De-energized Lines During Loss of SCADA Communication in Electric Power Distribution Systems. 2022 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). :1–5.

With the electric power distribution grid facing ever increasing complexity and new threats from cyber-attacks, situational awareness for system operators is quickly becoming indispensable. Identifying de-energized lines on the distribution system during a SCADA communication failure is a prime example where operators need to act quickly to deal with an emergent loss of service. Loss of cellular towers, poor signal strength, and even cyber-attacks can impact SCADA visibility of line devices on the distribution system. Neural Networks (NNs) provide a unique approach to learn the characteristics of normal system behavior, identify when abnormal conditions occur, and flag these conditions for system operators. This study applies a 24-hour load forecast for distribution line devices given the weather forecast and day of the week, then determines the current state of distribution devices based on changes in SCADA analogs from communicating line devices. A neural network-based algorithm is applied to historical events on Alabama Power's distribution system to identify de-energized sections of line when a significant amount of SCADA information is hidden.

Milov, Oleksandr, Khvostenko, Vladyslav, Natalia, Voropay, Korol, Olha, Zviertseva, Nataliia.  2022.  Situational Control of Cyber Security in Socio-Cyber-Physical Systems. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–6.

The features of socio-cyber-physical systems are presented, which dictate the need to revise traditional management methods and transform the management system in such a way that it takes into account the presence of a person both in the control object and in the control loop. The use of situational control mechanisms is proposed. The features of this approach and its comparison with existing methods of situational awareness are presented. The comparison has demonstrated wider possibilities and scope for managing socio-cyber-physical systems. It is recommended to consider a wider class of types of relations that exist in socio-cyber-physical systems. It is indicated that such consideration can be based on the use of pseudo-physical logics considered in situational control. It is pointed out that it is necessary to design a classifier of situations (primarily in cyberspace), instead of traditional classifiers of threats and intruders.

2023-04-14
Deepa, N R, Sivamangai, N M.  2022.  A State-Of-Art Model of Encrypting Medical Image Using DNA Cryptography and Hybrid Chaos Map - 2d Zaslavaski Map: Review. 2022 6th International Conference on Devices, Circuits and Systems (ICDCS). :190–195.

E-health, smart health and telemedicine are examples of sophisticated healthcare systems. For end-to-end communication, these systems rely on digital medical information. Although this digitizing saves much time, it is open source. As a result, hackers could potentially manipulate the digital medical image as it is being transmitted. It is harder to diagnose an actual disease from a modified digital medical image in medical diagnostics. As a result, ensuring the security and confidentiality of clinical images, as well as reducing the computing time of encryption algorithms, appear to be critical problems for research groups. Conventional approaches are insufficient to ensure high-level medical image security. So this review paper focuses on depicting advanced methods like DNA cryptography and Chaotic Map as advanced techniques that could potentially help in encrypting the digital image at an effective level. This review acknowledges the key accomplishments expressed in the encrypting measures and their success indicators of qualitative and quantitative measurement. This research study also explores the key findings and reasons for finding the lessons learned as a roadmap for impending findings.

ISSN: 2644-1802

2023-07-11
Qin, Xuhao, Ni, Ming, Yu, Xinsheng, Zhu, Danjiang.  2022.  Survey on Defense Technology of Web Application Based on Interpretive Dynamic Programming Languages. 2022 7th International Conference on Computer and Communication Systems (ICCCS). :795—801.

With the development of the information age, the process of global networking continues to deepen, and the cyberspace security has become an important support for today’s social functions and social activities. Web applications which have many security risks are the most direct interactive way in the process of the Internet activities. That is why the web applications face a large number of network attacks. Interpretive dynamic programming languages are easy to lean and convenient to use, they are widely used in the development of cross-platform web systems. As well as benefit from these advantages, the web system based on those languages is hard to detect errors and maintain the complex system logic, increasing the risk of system vulnerability and cyber threats. The attack defense of systems based on interpretive dynamic programming languages is widely concerned by researchers. Since the advance of endogenous security technologies, there are breakthroughs on the research of web system security. Compared with traditional security defense technologies, these technologies protect the system with their uncertainty, randomness and dynamism. Based on several common network attacks, the traditional system security defense technology and endogenous security technology of web application based on interpretive dynamic languages are surveyed and compared in this paper. Furthermore, the possible research directions of those technologies are discussed.

2023-06-23
Konuko, Goluck, Valenzise, Giuseppe, Lathuilière, Stéphane.  2022.  Ultra-Low Bitrate Video Conferencing Using Deep Image Animation. 2022 IEEE International Conference on Image Processing (ICIP). :3515–3520.

In this work we propose a novel deep learning approach for ultra-low bitrate video compression for video conferencing applications. To address the shortcomings of current video compression paradigms when the available bandwidth is extremely limited, we adopt a model-based approach that employs deep neural networks to encode motion information as keypoint displacement and reconstruct the video signal at the decoder side. The overall system is trained in an end-to-end fashion minimizing a reconstruction error on the encoder output. Objective and subjective quality evaluation experiments demonstrate that the proposed approach provides an average bitrate reduction for the same visual quality of more than 60% compared to HEVC.

ISSN: 2381-8549

2023-07-28
Ksibi, Sondes, JAIDI, Faouzi, BOUHOULA, Adel.  2022.  A User-Centric Fuzzy AHP-based Method for Medical Devices Security Assessment. 2022 15th International Conference on Security of Information and Networks (SIN). :01—07.

One of the most challenging issues facing Internet of Medical Things (IoMT) cyber defense is the complexity of their ecosystem coupled with the development of cyber-attacks. Medical equipments lack built-in security and are increasingly becoming connected. Moving beyond traditional security solutions becomes a necessity to protect patients and organizations. In order to effectively deal with the security risks of networked medical devices in such a complex and heterogeneous system, we need to measure security risks and prioritize mitigation actions. In this context, we propose a Fuzzy AHP-based method to assess security attributes of connected medical devices and compare different device models against a selected profile with regards to the user requirements. The proposal aims to empower user security awareness to make well-educated decisions.

2023-03-31
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Luevano, Luis Santiago, Méndez-Vázquez, Heydi, Uhl, Andreas.  2022.  Utilizing CNNs for Cryptanalysis of Selective Biometric Face Sample Encryption. 2022 26th International Conference on Pattern Recognition (ICPR). :892–899.

When storing face biometric samples in accordance with ISO/IEC 19794 as JPEG2000 encoded images, it is necessary to encrypt them for the sake of users’ privacy. Literature suggests selective encryption of JPEG2000 images as fast and efficient method for encryption, the trade-off is that some information is left in plaintext. This could be used by an attacker, in case the encrypted biometric samples are leaked. In this work, we will attempt to utilize a convolutional neural network to perform cryptanalysis of the encryption scheme. That is, we want to assess if there is any information left in plaintext in the selectively encrypted face images which can be used to identify the person. The chosen approach is to train CNNs for biometric face recognition not only with plaintext face samples but additionally conduct a refinement training with partially encrypted data. If this system can successfully utilize encrypted face samples for biometric matching, we can show that the information left in encrypted biometric face samples is information actually usable for biometric recognition.The method works and we can show that a supposedly secure biometric sample still contains identifying information on average over the whole database.

ISSN: 2831-7475

2023-02-02
Pujar, Saurabh, Zheng, Yunhui, Buratti, Luca, Lewis, Burn, Morari, Alessandro, Laredo, Jim, Postlethwait, Kevin, Görn, Christoph.  2022.  Varangian: A Git Bot for Augmented Static Analysis. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :766–767.

The complexity and scale of modern software programs often lead to overlooked programming errors and security vulnerabilities. Developers often rely on automatic tools, like static analysis tools, to look for bugs and vulnerabilities. Static analysis tools are widely used because they can understand nontrivial program behaviors, scale to millions of lines of code, and detect subtle bugs. However, they are known to generate an excess of false alarms which hinder their utilization as it is counterproductive for developers to go through a long list of reported issues, only to find a few true positives. One of the ways proposed to suppress false positives is to use machine learning to identify them. However, training machine learning models requires good quality labeled datasets. For this purpose, we developed D2A [3], a differential analysis based approach that uses the commit history of a code repository to create a labeled dataset of Infer [2] static analysis output.

2023-06-23
P, Dayananda, Subramanian, Siddharth, Suresh, Vijayalakshmi, Shivalli, Rishab, Sinha, Shrinkhla.  2022.  Video Compression using Deep Neural Networks. 2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP). :1–5.

Advanced video compression is required due to the rise of online video content. A strong compression method can help convey video data effectively over a constrained bandwidth. We observed how more internet usage for video conferences, online gaming, and education led to decreased video quality from Netflix, YouTube, and other streaming services in Europe and other regions, particularly during the COVID-19 epidemic. They are represented in standard video compression algorithms as a succession of reference frames after residual frames, and these approaches are limited in their application. Deep learning's introduction and current advancements have the potential to overcome such problems. This study provides a deep learning-based video compression model that meets or exceeds current H.264 standards.

2023-02-17
Amaya-Mejía, Lina María, Duque-Suárez, Nicolás, Jaramillo-Ramírez, Daniel, Martinez, Carol.  2022.  Vision-Based Safety System for Barrierless Human-Robot Collaboration. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :7331–7336.

Human safety has always been the main priority when working near an industrial robot. With the rise of Human-Robot Collaborative environments, physical barriers to avoiding collisions have been disappearing, increasing the risk of accidents and the need for solutions that ensure a safe Human-Robot Collaboration. This paper proposes a safety system that implements Speed and Separation Monitoring (SSM) type of operation. For this, safety zones are defined in the robot's workspace following current standards for industrial collaborative robots. A deep learning-based computer vision system detects, tracks, and estimates the 3D position of operators close to the robot. The robot control system receives the operator's 3D position and generates 3D representations of them in a simulation environment. Depending on the zone where the closest operator was detected, the robot stops or changes its operating speed. Three different operation modes in which the human and robot interact are presented. Results show that the vision-based system can correctly detect and classify in which safety zone an operator is located and that the different proposed operation modes ensure that the robot's reaction and stop time are within the required time limits to guarantee safety.

ISSN: 2153-0866

2022-12-01
Queirós, Mauro, Pereira, João Lobato, Leiras, Valdemar, Meireles, José, Fonseca, Jaime, Borges, João.  2022.  Work cell for assembling small components in PCB. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.

Flexibility and speed in the development of new industrial machines are essential factors for the success of capital goods industries. When assembling a printed circuit board (PCB), since all the components are surface mounted devices (SMD), the whole process is automatic. However, in many PCBs, it is necessary to place components that are not SMDs, called pin through hole components (PTH), having to be inserted manually, which leads to delays in the production line. This work proposes and validates a prototype work cell based on a collaborative robot and vision systems whose objective is to insert these components in a completely autonomous or semi-autonomous way. Different tests were made to validate this work cell, showing the correct implementation and the possibility of replacing the human worker on this PCB assembly task.

2022-12-02
Chen, Yan, Zhou, Xingchen, Zhu, Jian, Ji, Hongbin.  2022.  Zero Trust Security of Energy Resource Control System. 2022 IEEE 5th International Electrical and Energy Conference (CIEEC). :5052—5055.

The security of Energy Data collection is the basis of achieving reliability and security intelligent of smart grid. The newest security communication of Data collection is Zero Trust communication; The Strategy of Zero Trust communication is that don’t trust any device of outside or inside. Only that device authenticate is successful and software and hardware is more security, the Energy intelligent power system allow the device enroll into network system, otherwise deny these devices. When the device has been communicating with the Energy system, the Zero Trust still need to detect its security and vulnerability, if device have any security issue or vulnerability issue, the Zero Trust deny from network system, it ensures that Energy power system absolute security, which lays a foundation for the security analysis of intelligent power unit.

Bobbert, Yuri, Scheerder, Jeroen.  2022.  Zero Trust Validation: from Practice to Theory : An empirical research project to improve Zero Trust implementations. 2022 IEEE 29th Annual Software Technology Conference (STC). :93—104.

How can high-level directives concerning risk, cybersecurity and compliance be operationalized in the central nervous system of any organization above a certain complexity? How can the effectiveness of technological solutions for security be proven and measured, and how can this technology be aligned with the governance and financial goals at the board level? These are the essential questions for any CEO, CIO or CISO that is concerned with the wellbeing of the firm. The concept of Zero Trust (ZT) approaches information and cybersecurity from the perspective of the asset to be protected, and from the value that asset represents. Zero Trust has been around for quite some time. Most professionals associate Zero Trust with a particular architectural approach to cybersecurity, involving concepts such as segments, resources that are accessed in a secure manner and the maxim “always verify never trust”. This paper describes the current state of the art in Zero Trust usage. We investigate the limitations of current approaches and how these are addressed in the form of Critical Success Factors in the Zero Trust Framework developed by ON2IT ‘Zero Trust Innovators’ (1). Furthermore, this paper describes the design and engineering of a Zero Trust artefact that addresses the problems at hand (2), according to Design Science Research (DSR). The last part of this paper outlines the setup of an empirical validation trough practitioner oriented research, in order to gain a broader acceptance and implementation of Zero Trust strategies (3). The final result is a proposed framework and associated technology which, via Zero Trust principles, addresses multiple layers of the organization to grasp and align cybersecurity risks and understand the readiness and fitness of the organization and its measures to counter cybersecurity risks.

2023-03-31
Gupta, Ashutosh, Agrawal, Anita.  2022.  Advanced Encryption Standard Algorithm with Optimal S-box and Automated Key Generation. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :2112–2115.

Advanced Encryption Standard (AES) algorithm plays an important role in a data security application. In general S-box module in AES will give maximum confusion and diffusion measures during AES encryption and cause significant path delay overhead. In most cases, either L UTs or embedded memories are used for S- box computations which are vulnerable to attacks that pose a serious risk to real-world applications. In this paper, implementation of the composite field arithmetic-based Sub-bytes and inverse Sub-bytes operations in AES is done. The proposed work includes an efficient multiple round AES cryptosystem with higher-order transformation and composite field s-box formulation with some possible inner stage pipelining schemes which can be used for throughput rate enhancement along with path delay optimization. Finally, input biometric-driven key generation schemes are used for formulating the cipher key dynamically, which provides a higher degree of security for the computing devices.

2022-12-09
Liu, Chun, Shi, Yue.  2022.  Anti-attack Fault-tolerant Control of Multi-agent Systems with Complicated Actuator Faults and Cyber Attacks. 2022 5th International Symposium on Autonomous Systems (ISAS). :1—5.
This study addresses the coordination issue of multi-agent systems under complicated actuator faults and cyber attacks. Distributed fault-tolerant design is developed with the estimated and output neighboring information in decentralized estimation observer. Criteria of reaching the exponential coordination of multi-agent systems with cyber attacks is obtained with average dwelling time and chattering bound method. Simulations validate the efficiency of the anti-attack fault-tolerant design.
2023-06-29
Gupta, Sunil, Shahid, Mohammad, Goyal, Ankur, Saxena, Rakesh Kumar, Saluja, Kamal.  2022.  Black Hole Detection and Prevention Using Digital Signature and SEP in MANET. 2022 10th International Conference on Emerging Trends in Engineering and Technology - Signal and Information Processing (ICETET-SIP-22). :1–5.
The MANET architecture's future growth will make extensive use of encryption and encryption to keep network participants safe. Using a digital signature node id, we illustrate how we may stimulate the safe growth of subjective clusters while simultaneously addressing security and energy efficiency concerns. The dynamic topology of MANET allows nodes to join and exit at any time. A form of attack known as a black hole assault was used to accomplish this. To demonstrate that he had the shortest path with the least amount of energy consumption, an attacker in MATLAB R2012a used a digital signature ID to authenticate the node from which he wished to intercept messages (DSEP). “Digital Signature”, “MANET,” and “AODV” are all terms used to describe various types of digital signatures. Black Hole Attack, Single Black Hole Attack, Digital Signature, and DSEP are just a few of the many terms associated with MANET.
ISSN: 2157-0485
2023-01-13
Alimzhanova, Zhanna, Tleubergen, Akzer, Zhunusbayeva, Salamat, Nazarbayev, Dauren.  2022.  Comparative Analysis of Risk Assessment During an Enterprise Information Security Audit. 2022 International Conference on Smart Information Systems and Technologies (SIST). :1—6.

This article discusses a threat and vulnerability analysis model that allows you to fully analyze the requirements related to information security in an organization and document the results of the analysis. The use of this method allows avoiding and preventing unnecessary costs for security measures arising from subjective risk assessment, planning and implementing protection at all stages of the information systems lifecycle, minimizing the time spent by an information security specialist during information system risk assessment procedures by automating this process and reducing the level of errors and professional skills of information security experts. In the initial sections, the common methods of risk analysis and risk assessment software are analyzed and conclusions are drawn based on the results of comparative analysis, calculations are carried out in accordance with the proposed model.

2023-06-09
Alyami, Areej, Sammon, David, Neville, Karen, Mahony, Carolanne.  2022.  The Critical Success Factors for Security Education, Training and Awareness (SETA) Programmes. 2022 Cyber Research Conference - Ireland (Cyber-RCI). :1—12.
This study explores the Critical Success Factors (CSFs) for Security Education, Training and Awareness (SETA) programmes. Data is gathered from 20 key informants (using semi-structured interviews) from various geographic locations including the Gulf nations, Middle East, USA, UK, and Ireland. The analysis of these key informant interviews produces eleven CSFs for SETA programmes. These CSFs are mapped along the phases of a SETA programme lifecycle (design, development, implementation, and evaluation).
2023-06-22
Ashodia, Namita, Makadiya, Kishan.  2022.  Detection and Mitigation of DDoS attack in Software Defined Networking: A Survey. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS). :1175–1180.

Software Defined Networking (SDN) is an emerging technology, which provides the flexibility in communicating among network. Software Defined Network features separation of the data forwarding plane from the control plane which includes controller, resulting centralized network. Due to centralized control, the network becomes more dynamic, and resources are managed efficiently and cost-effectively. Network Virtualization is transformation of network from hardware-based to software-based. Network Function Virtualization will permit implementation, adaptable provisioning, and even management of functions virtually. The use of virtualization of SDN networks permits network to strengthen the features of SDN and virtualization of NFV and has for that reason has attracted notable research awareness over the last few years. SDN platform introduces network security challenges. The network becomes vulnerable when a large number of requests is encapsulated inside packet\_in messages and passed to controller from switch for instruction, if it is not recognized by existing flow entry rules. which will limit the resources and become a bottleneck for the entire network leading to DDoS attack. It is necessary to have quick provisional methods to prevent the switches from breaking down. To resolve this problem, the researcher develops a mechanism that detects and mitigates flood attacks. This paper provides a comprehensive survey which includes research relating frameworks which are utilized for detecting attack and later mitigation of flood DDoS attack in Software Defined Network (SDN) with the help of NFV.

2023-07-12
Maity, Ilora, Vu, Thang X., Chatzinotas, Symeon, Minardi, Mario.  2022.  D-ViNE: Dynamic Virtual Network Embedding in Non-Terrestrial Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :166—171.
In this paper, we address the virtual network embedding (VNE) problem in non-terrestrial networks (NTNs) enabling dynamic changes in the virtual network function (VNF) deployment to maximize the service acceptance rate and service revenue. NTNs such as satellite networks involve highly dynamic topology and limited resources in terms of rate and power. VNE in NTNs is a challenge because a static strategy under-performs when new service requests arrive or the network topology changes unexpectedly due to failures or other events. Existing solutions do not consider the power constraint of satellites and rate limitation of inter-satellite links (ISLs) which are essential parameters for dynamic adjustment of existing VNE strategy in NTNs. In this work, we propose a dynamic VNE algorithm that selects a suitable VNE strategy for new and existing services considering the time-varying network topology. The proposed scheme, D-ViNE, increases the service acceptance ratio by 8.51% compared to the benchmark scheme TS-MAPSCH.
2022-12-07
Yan, Huang, Zhu, Hanhao, Cui, Zhiqiang, Chai, Zhigang, Wang, Qile, Wang, Yize.  2022.  Effect of seamount on low frequency acoustic propagation based on time domain. 2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS). :780—783.
From the perspective of time domain, the propagation characteristics of sound waves in seawater can be seen more intuitively. In order to study the influence and characteristics of seamount on low frequency acoustic propagation, the research of this paper used the Finite Element Method (FEM) based on time domain to set up a full-waveguide low-frequency acoustic propagation simulation model, and discussed the influencing laws about acoustic propagation on seamount. The simulation results show that Seamounts can hinder the propagation of sound waves, weaken the energy of sound waves. The topographic changes of seamounts can cause the coupling and transformation of acoustic signals during the propagation which can stimulate the seabed interface wave.