Biblio

Found 609 results

Filters: Keyword is cyber physical systems  [Clear All Filters]
2023-08-24
Peng, Haoran, Chen, Pei-Chen, Chen, Pin-Hua, Yang, Yung-Shun, Hsia, Ching-Chieh, Wang, Li-Chun.  2022.  6G toward Metaverse: Technologies, Applications, and Challenges. 2022 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS). :6–10.
Metaverse opens up a new social networking paradigm where people can experience a real interactive feeling without physical space constraints. Social interactions are gradually evolving from text combined with pictures and videos to 3-dimensional virtual reality, making the social experience increasingly physical, implying that more metaverse applications with immersive experiences will be developed in the future. However, the increasing data dimensionality and volume for new metaverse applications present a significant challenge in data acquisition, security, and sharing. Furthermore, metaverse applications require high capacity and ultrareliability for the wireless system to guarantee the quality of user experience, which cannot be addressed in the current fifth-generation system. Therefore, reaching the metaverse is dependent on the revolution in the sixth-generation (6G) wireless communication, which is expected to provide low-latency, high-throughput, and secure services. This article provides a comprehensive view of metaverse applications and investigates the fundamental technologies for the 6G toward metaverse.
2023-08-18
Li, Shijie, Liu, Junjiao, Pan, Zhiwen, Lv, Shichao, Si, Shuaizong, Sun, Limin.  2022.  Anomaly Detection based on Robust Spatial-temporal Modeling for Industrial Control Systems. 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). :355—363.
Industrial Control Systems (ICS) are increasingly facing the threat of False Data Injection (FDI) attacks. As an emerging intrusion detection scheme for ICS, process-based Intrusion Detection Systems (IDS) can effectively detect the anomalies caused by FDI attacks. Specifically, such IDS establishes anomaly detection model which can describe the normal pattern of industrial processes, then perform real-time anomaly detection on industrial process data. However, this method suffers low detection accuracy due to the complexity and instability of industrial processes. That is, the process data inherently contains sophisticated nonlinear spatial-temporal correlations which are hard to be explicitly described by anomaly detection model. In addition, the noise and disturbance in process data prevent the IDS from distinguishing the real anomaly events. In this paper, we propose an Anomaly Detection approach based on Robust Spatial-temporal Modeling (AD-RoSM). Concretely, to explicitly describe the spatial-temporal correlations within the process data, a neural based state estimation model is proposed by utilizing 1D CNN for temporal modeling and multi-head self attention mechanism for spatial modeling. To perform robust anomaly detection in the presence of noise and disturbance, a composite anomaly discrimination model is designed so that the outputs of the state estimation model can be analyzed with a combination of threshold strategy and entropy-based strategy. We conducted extensive experiments on two benchmark ICS security datasets to demonstrate the effectiveness of our approach.
2023-08-24
Veeraiah, Vivek, Kumar, K Ranjit, Lalitha Kumari, P., Ahamad, Shahanawaj, Bansal, Rohit, Gupta, Ankur.  2022.  Application of Biometric System to Enhance the Security in Virtual World. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :719–723.
Virtual worlds was becoming increasingly popular in a variety of fields, including education, business, space exploration, and video games. Establishing the security of virtual worlds was becoming more critical as they become more widely used. Virtual users were identified using a behavioral biometric system. Improve the system's ability to identify objects by fusing scores from multiple sources. Identification was based on a review of user interactions in virtual environments and a comparison with previous recordings in the database. For behavioral biometric systems like the one described, it appears that score-level biometric fusion was a promising tool for improving system performance. As virtual worlds become more immersive, more people will want to participate in them, and more people will want to be able to interact with each other. Each region of the Meta-verse was given a glimpse of the current state of affairs and the trends to come. As hardware performance and institutional and public interest continue to improve, the Meta-verse's development is hampered by limitations like computational method limits and a lack of realized collaboration between virtual world stakeholders and developers alike. A major goal of the proposed research was to verify the accuracy of the biometric system to enhance the security in virtual world. In this study, the precision of the proposed work was compared to that of previous work.
Mishra, Shilpi, Arora, Himanshu, Parakh, Garvit, Khandelwal, Jayesh.  2022.  Contribution of Blockchain in Development of Metaverse. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :845–850.
Metaverse is becoming the new standard for social networks and 3D virtual worlds when Facebook officially rebranded to Metaverse in October 2021. Many relevant technologies are used in the metaverse to offer 3D immersive and customized experiences at the user’s fingertips. Despite the fact that the metaverse receives a lot of attention and advantages, one of the most pressing concerns for its users is the safety of their digital material and data. As a result of its decentralization, immutability, and transparency, blockchain is a possible alternative. Our goal is to conduct a comprehensive assessment of blockchain systems in the metaverse to properly appreciate its function in the metaverse. To begin with, the paper introduces blockchain and the metaverse and explains why it’s necessary for the metaverse to adopt blockchain technology. Aside from these technological considerations, this article focuses on how blockchain-based approaches for the metaverse may be used from a privacy and security standpoint. There are several technological challenegs that need to be addressed for making the metaverse a reality. The influence of blockchain on important key technologies with in metaverse, such as Artifical Intelligence, big data and the Internet-of-Things (IoT) is also examined. Several prominent initiatives are also shown to demonstrate the importance of blockchain technology in the development of metaverse apps and services. There are many possible possibilities for future development and research in the application of blockchain technology in the metaverse.
Wei-Kocsis, Jin, Sabounchi, Moein, Yang, Baijian, Zhang, Tonglin.  2022.  Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm. 2022 IEEE Frontiers in Education Conference (FIE). :1–5.
This Innovative Practice Work-in-Progress paper presents a virtual, proactive, and collaborative learning paradigm that can engage learners with different backgrounds and enable effective retention and transfer of the multidisciplinary AI-cybersecurity knowledge. While progress has been made to better understand the trustworthiness and security of artificial intelligence (AI) techniques, little has been done to translate this knowledge to education and training. There is a critical need to foster a qualified cybersecurity workforce that understands the usefulness, limitations, and best practices of AI technologies in the cybersecurity domain. To address this import issue, in our proposed learning paradigm, we leverage multidisciplinary expertise in cybersecurity, AI, and statistics to systematically investigate two cohesive research and education goals. First, we develop an immersive learning environment that motivates the students to explore AI/machine learning (ML) development in the context of real-world cybersecurity scenarios by constructing learning models with tangible objects. Second, we design a proactive education paradigm with the use of hackathon activities based on game-based learning, lifelong learning, and social constructivism. The proposed paradigm will benefit a wide range of learners, especially underrepresented students. It will also help the general public understand the security implications of AI. In this paper, we describe our proposed learning paradigm and present our current progress of this ongoing research work. In the current stage, we focus on the first research and education goal and have been leveraging cost-effective Minecraft platform to develop an immersive learning environment where the learners are able to investigate the insights of the emerging AI/ML concepts by constructing related learning modules via interacting with tangible AI/ML building blocks.
ISSN: 2377-634X
Riedel, Paul, Riesner, Michael, Wendt, Karsten, Aßmann, Uwe.  2022.  Data-Driven Digital Twins in Surgery utilizing Augmented Reality and Machine Learning. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :580–585.
On the one hand, laparoscopic surgery as medical state-of-the-art method is minimal invasive, and thus less stressful for patients. On the other hand, laparoscopy implies higher demands on physicians, such as mental load or preparation time, hence appropriate technical support is essential for quality and suc-cess. Medical Digital Twins provide an integrated and virtual representation of patients' and organs' data, and thus a generic concept to make complex information accessible by surgeons. In this way, minimal invasive surgery could be improved significantly, but requires also a much more complex software system to achieve the various resulting requirements. The biggest challenges for these systems are the safe and precise mapping of the digital twin to reality, i.e. dealing with deformations, movement and distortions, as well as balance out the competing requirement for intuitive and immersive user access and security. The case study ARAILIS is presented as a proof in concept for such a system and provides a starting point for further research. Based on the insights delivered by this prototype, a vision for future Medical Digital Twins in surgery is derived and discussed.
ISSN: 2694-2941
Kaufmann, Kaspar, Wyssenbach, Thomas, Schwaninger, Adrian.  2022.  Exploring the effects of segmentation when learning with Virtual Reality and 2D displays: a study with airport security officers. 2022 IEEE International Carnahan Conference on Security Technology (ICCST). :1–1.
With novel 3D imaging technology based on computed tomography (CT) set to replace the current 2D X-ray systems, airports face the challenge of adequately preparing airport security officers (screeners) through knowledge building. Virtual reality (VR) bears the potential to greatly facilitate this process by allowing learners to experience and engage in immersive virtual scenarios as if they were real. However, while general aspects of immersion have been explored frequently, less is known about the benefits of immersive technology for instructional purposes in practical settings such as airport security.In the present study, we evaluated how different display technologies (2D vs VR) and segmentation (system-paced vs learner-paced) affected screeners' objective and subjective knowledge gain, cognitive load, as well as aspects of motivation and technology acceptance. By employing a 2 x 2 between-subjects design, four experimental groups experienced uniform learning material featuring information about 3D CT technology and its application in airport security: 2D system-paced, 2D learner-paced, VR system-paced, and VR learner-paced. The instructional material was presented as an 11 min multimedia lesson featuring words (i.e., narration, onscreen text) and pictures in dynamic form (i.e., video, animation). Participants of the learner-paced groups were prompted to initialize the next section of the multimedia lesson by pressing a virtual button after short segments of information. Additionally, a control group experiencing no instructional content was included to evaluate the effectiveness of the instructional material. The data was collected at an international airport with screeners having no prior 3D CT experience (n=162).The results show main effects on segmentation for objective learning outcomes (favoring system-paced), germane cognitive load on display technology (supporting 2D). These results contradict the expected benefits of VR and segmentation, respectively. Overall, the present study offers valuable insight on how to implement instructional material for a practical setting.
ISSN: 2153-0742
Briggs, Shannon, Chabot, Sam, Sanders, Abraham, Peveler, Matthew, Strzalkowski, Tomek, Braasch, Jonas.  2022.  Multiuser, multimodal sensemaking cognitive immersive environment with a task-oriented dialog system. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1–3.
This paper is a conceptual paper that explores how the sensemaking process by intelligence analysts completed within a cognitive immersive environment might be impacted by the inclusion of a progressive dialog system. The tools enabled in the sensemaking room (a specific instance within the cognitive immersive environment) were informed by tools from the intelligence analysis domain. We explore how a progressive dialog system would impact the use of tools such as the collaborative brainstorming exercise [1]. These structured analytic techniques are well established in intelligence analysis training literature, and act as ways to access the intended users' cognitive schema as they use the cognitive immersive room and move through the sensemaking process. A prior user study determined that the sensemaking room encouraged users to be more concise and representative with information while using the digital brainstorming tool. We anticipate that addition of the progressive dialog function will enable a more cohesive link between information foraging and sensemaking behaviors for analysts.
Aliman, Nadisha-Marie, Kester, Leon.  2022.  VR, Deepfakes and Epistemic Security. 2022 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR). :93–98.
In recent years, technological advancements in the AI and VR fields have increasingly often been paired with considerations on ethics and safety aimed at mitigating unintentional design failures. However, cybersecurity-oriented AI and VR safety research has emphasized the need to additionally appraise instantiations of intentional malice exhibited by unethical actors at pre- and post-deployment stages. On top of that, in view of ongoing malicious deepfake developments that can represent a threat to the epistemic security of a society, security-aware AI and VR design strategies require an epistemically-sensitive stance. In this vein, this paper provides a theoretical basis for two novel AIVR safety research directions: 1) VR as immersive testbed for a VR-deepfake-aided epistemic security training and 2) AI as catalyst within a deepfake-aided so-called cyborgnetic creativity augmentation facilitating an epistemically-sensitive threat modelling. For illustration, we focus our use case on deepfake text – an underestimated deepfake modality. In the main, the two proposed transdisciplinary lines of research exemplify how AIVR safety to defend against unethical actors could naturally converge toward AIVR ethics whilst counteracting epistemic security threats.
ISSN: 2771-7453
2022-12-09
Sagar, Maloth, C, Vanmathi.  2022.  Network Cluster Reliability with Enhanced Security and Privacy of IoT Data for Anomaly Detection Using a Deep Learning Model. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :1670—1677.

Cyber Physical Systems (CPS), which contain devices to aid with physical infrastructure activities, comprise sensors, actuators, control units, and physical objects. CPS sends messages to physical devices to carry out computational operations. CPS mainly deals with the interplay among cyber and physical environments. The real-time network data acquired and collected in physical space is stored there, and the connection becomes sophisticated. CPS incorporates cyber and physical technologies at all phases. Cyber Physical Systems are a crucial component of Internet of Things (IoT) technology. The CPS is a traditional concept that brings together the physical and digital worlds inhabit. Nevertheless, CPS has several difficulties that are likely to jeopardise our lives immediately, while the CPS's numerous levels are all tied to an immediate threat, therefore necessitating a look at CPS security. Due to the inclusion of IoT devices in a wide variety of applications, the security and privacy of users are key considerations. The rising level of cyber threats has left current security and privacy procedures insufficient. As a result, hackers can treat every person on the Internet as a product. Deep Learning (DL) methods are therefore utilised to provide accurate outputs from big complex databases where the outputs generated can be used to forecast and discover vulnerabilities in IoT systems that handles medical data. Cyber-physical systems need anomaly detection to be secure. However, the rising sophistication of CPSs and more complex attacks means that typical anomaly detection approaches are unsuitable for addressing these difficulties since they are simply overwhelmed by the volume of data and the necessity for domain-specific knowledge. The various attacks like DoS, DDoS need to be avoided that impact the network performance. In this paper, an effective Network Cluster Reliability Model with enhanced security and privacy levels for the data in IoT for Anomaly Detection (NSRM-AD) using deep learning model is proposed. The security levels of the proposed model are contrasted with the proposed model and the results represent that the proposed model performance is accurate

2023-08-24
Sun, Chuang, Cao, Junwei, Huo, Ru, Du, Lei, Cheng, Xiangfeng.  2022.  Metaverse Applications in Energy Internet. 2022 IEEE International Conference on Energy Internet (ICEI). :7–12.
With the increasing number of distributed energy sources and the growing demand for free exchange of energy, Energy internet (EI) is confronted with great challenges of persistent connection, stable transmission, real-time interaction, and security. The new definition of metaverse in the EI field is proposed as a potential solution for these challenges by establishing a massive and comprehensive fusion 3D network, which can be considered as the advanced stage of EI. The main characteristics of the metaverse such as reality to virtualization, interaction, persistence, and immersion are introduced. Specifically, we present the key enabling technologies of the metaverse including virtual reality, artificial intelligence, blockchain, and digital twin. Meanwhile, the potential applications are presented from the perspectives of immersive user experience, virtual power station, management, energy trading, new business, device maintenance. Finally, some challenges of metaverse in EI are concluded.
Xu, Xinyun, Li, Bing, Wang, Yuhao.  2022.  Exploration of the principle of 6G communication technology and its development prospect. 2022 International Conference on Electronics and Devices, Computational Science (ICEDCS). :100–103.
Nowadays, 5G has been widely used in various fields. People are starting to turn their attention to 6G. Therefore, at the beginning, this paper describes in detail the principle and performance of 6G, and introduces the key technologies of 6G, Cavity technology and THz technology. Based on the high-performance indicators of 6G, we then study the possible application changes brought by 6G, for example, 6G technology will make remote surgery and remote control possible. 6G technology will make remote surgery and remote control possible. 6G will speed up the interconnection of everything, allowing closer and faster connection between cars. Next, virtual reality is discussed. 6G technology will enable better development of virtual reality technology and enhance people's immersive experience. Finally, we present the issues that need to be addressed with 6G technology, such as cybersecurity issues and energy requirements. As well as the higher challenges facing 6G technology, such as connectivity and communication on a larger social plane.
2022-06-09
Aman, Muhammad Naveed, Sikdar, Biplab.  2021.  AI Based Algorithm-Hardware Separation for IoV Security. 2021 IEEE Globecom Workshops (GC Wkshps). :1–6.
The Internet of vehicles is emerging as an exciting application to improve safety and providing better services in the form of active road signs, pay-as-you-go insurance, electronic toll, and fleet management. Internet connected vehicles are exposed to new attack vectors in the form of cyber threats and with the increasing trend of cyber attacks, the success of autonomous vehicles depends on their security. Existing techniques for IoV security are based on the un-realistic assumption that all the vehicles are equipped with the same hardware (at least in terms of computational capabilities). However, the hardware platforms used by various vehicle manufacturers are highly heterogeneous. Therefore, a security protocol designed for IoVs should be able to detect the computational capabilities of the underlying platform and adjust the security primitives accordingly. To solve this issue, this paper presents a technique for algorithm-hardware separation for IoV security. The proposed technique uses an iterative routine and the corresponding execution time to detect the computational capabilities of a hardware platform using an artificial intelligence based inference engine. The results on three different commonly used micro-controllers show that the proposed technique can effectively detect the type of hardware platform with up to 100% accuracy.
2022-02-04
Liu, Zhichang, Yin, Xin, Pan, Yuanlin, Xi, Wei, Yin, Xianggen, Liu, Binyan.  2021.  Analysis of zero-mode inrush current characteristics of converter transformers. 2021 56th International Universities Power Engineering Conference (UPEC). :1–6.
In recent years, there have been situations in which the zero-sequence protection of the transformer has been incorrectly operated due to the converter transformer energizing or fault recovery. For converter transformers, maloperation may also occur. However, there is almost no theoretical research on the zero-mode inrush currents of converter transformers. This paper studies the characteristics of the zero-mode inrush currents of the converter transformers, including the relationship between the amplitude and attenuation characteristics of the zero-mode inrush currents of converter transformers, and their relationship with the system resistance, remanence, and closing angle. First, based on the T-type equivalent circuit of the transformer, the equivalent circuit of the zero-mode inrush current of each transformer is obtained. On this basis, the amplitude relationship of the zero-mode inrush currents of different converter transformers is obtained: the zero-mode inrush current of the energizing pole YY transformer becomes larger than the YD transformer, the energized pole YD becomes greater than the YY transformer, and the YY transformer zero-mode inrush current rises from 0. It is also analyzed that the sympathetic interaction will make the attenuation of the converter transformer zero-mode inrush current slower. The system resistance mainly affects the initial attenuation speed, and the later attenuation speed is mainly determined by the converter transformer leakage reactance. Finally, PSCAD modeling and simulation are carried out to verify the accuracy of the theoretical analysis.
Septiani, Ardita, Ikaningsih, Manty A., Sari, Tanti P., Idayanti, Novrita, Dedi.  2021.  The Behaviour of Magnetic Properties and Electromagnetic Absorption of MgFe2O4 prepared by Powder Metallurgy Method. 2021 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). :136–140.
This study focuses on the behavior of magnetic properties and electromagnetic absorption of MgFe2O4 prepared by powder metallurgy. Magnesium ferrite was synthesized using oxide precursors (MgO and Fe2 O3). The samples were calcined at 700 °C for 3 hours and sintered at 1100 °C for 24 hours with varying compaction pressure (80 kg/cm2, 90 kg/cm2, 100 kg/cm2). Magnesium ferrites were characterized using an X-Ray Diffraction (XRD) for their crystal structure analysis, a Scanning Electron Microscope equipped with an Energy Dispersive Spectroscopy (SEM-EDS) for their microstructure and elemental composition studies, a Permagraph for their magnetic properties, and a Vector Network Analysis (VNA) for their microwave absorption characteristics. XRD patterns shows primary phase of MgFe2O4 and secondary phase of Fe2 O3 present in all three samples. The SEM characterization reveal the microstructure of magnesium ferrite and the EDS spectra confirm the presence of Fe, Mg, and O. The hysteresis curves show that the values of remanence magnetic induction (Br) are 17.5 emu/g, 16.5 emu/g, and 14.5 emu/g, respective to the increasing compaction pressure. Saturation magnetization values are increasing whereas the coercivity values are found to have inconsistent change with increasing compaction pressure. According to VNA results, the values of reflection loss are -16.15 dB, -22.45 dB, and -27.55 dB, respectively.
2022-06-09
Sabir, Zakaria, Amine, Aouatif.  2021.  Connected Vehicles using NDN: Security Concerns and Remaining Challenges. 2021 7th International Conference on Optimization and Applications (ICOA). :1–6.
Vehicular networks have been considered as a hopeful technology to enhance road safety, which is a crossing area of Internet of Things (IoT) and Intelligent Transportation Systems (ITS). Current Internet architecture using the TCP/IP model and based on host-to-host is limited when it comes to vehicular communications which are characterized by high speed and dynamic topology. Thus, using Named Data Networking (NDN) in connected vehicles may tackle the issues faced with the TCP/IP model. In this paper, we investigate the security concerns of applying NDN in vehicular environments and discuss the remaining challenges in order to guide researchers in this field to choose their future research direction.
2022-07-12
Khanzadi, Pouria, Kordnoori, Shirin, Vasigh, Zahra, Mostafaei, Hamidreza, Akhtarkavan, Ehsan.  2021.  A Cyber Physical System based Stochastic Process Language With NuSMV Model Checker. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1—8.
Nowadays, cyber physical systems are playing an important role in human life in which they provide features that make interactions between human and machine easier. To design and analysis such systems, the main problem is their complexity. In this paper, we propose a description language for cyber physical systems based on stochastic processes. The proposed language is called SPDL (Stochastic Description Process Language). For designing SPDL, two main parts are considered for Cyber Physical Systems (CSP): embedded systems and physical environment. Then these parts are defined as stochastic processes and CPS is defined as a tuple. Syntax and semantics of SPDL are stated based on the proposed definition. Also, the semantics are defined as by set theory. For implementation of SPDL, dependencies between words of a requirements are extracted as a tree data structure. Based on the dependencies, SPDL is used for describing the CPS. Also, a lexical analyzer and a parser based on a defined BNF grammar for SPDL is designed and implemented. Finally, SPDL of CPS is transformed to NuSMV which is a symbolic model checker. The Experimental results show that SPDL is capable of describing cyber physical systems by natural language.
2022-06-09
Claude, Tuyisenge Jean, Viviane, Ishimwe, Paul, Iradukunda Jean, Didacienne, Mukanyiligira.  2021.  Development of Security Starting System for Vehicles Based on IoT. 2021 International Conference on Information Technology (ICIT). :505–510.
The transportation system is becoming tremendously important in today's human activities and the number of urban vehicles grows rapidly. The vehicle theft also has become a shared concern for all vehicle owners. However, the present anti-theft system which maybe high reliable, lack of proper mechanism for preventing theft before it happens. This work proposes the internet of things based smart vehicle security staring system; efficient security provided to the vehicle owners relies on securing car ignition system by using a developed android application running on smart phone connected to the designed system installed in vehicle. With this system it is non- viable to access the vehicle's functional system in case the ignition key has been stolen or lost. It gives the drivers the ability to stay connected with their vehicle. Whenever the ignition key is stolen or lost, it is impossible to start the vehicle as the ignition system is still locked on the vehicle start and only the authorized person will be able to start the vehicle at convenient time with the combination of ignition key and smart phone application. This study proposes to design the system that uses node MCU, Bluetooth low energy (BLE), transistors, power relays and android smartphone in system testing. In addition, it is cost effective and once installed in the vehicle there is no more cost of maintenance.
2022-05-05
Vishwakarma, Seema, Gupta, Neetesh Kumar.  2021.  An Efficient Color Image Security Technique for IOT using Fast RSA Encryption Technique. 2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT). :717—722.
Implementing the color images encryption is a challenging field of the research for IOT applications. An exponential growth in imaging cameras in IOT uses makes it critical to design the robust image security algorithms. It is also observed that performance of existing encryption methods degrades under the presence of noisy environments. This is the major concern of evaluating the encryption method in this paper. The prime concern of this paper is to design the fast efficient color images encryption algorithm by designing an efficient and robustness RSA encryption algorithm. Method takes the advantage of both preprocessing and the Gaussian pyramid (GP) approach for encryption. To improve the performance it is proposed to use the LAB color space and implement the RSA encryption on luminance (L) component using the GP domain. The median filter and image sharpening is used for preprocessing. The goal is to improve the performance under highly noisy imaging environment. The performance is compared based on the crypto weights and on the basis of visual artifacts and entropy analysis. The decrypted outputs are again converted to color image output. Using the LAB color space is expected to improve the entropy performance of the image. Result of proposed encryption method is evaluated under the different types of the noisy attacks over the color images and also performance is compared with state of art encryption methods. Significant improvement speed of the algorithm is compared in terms of the elapsed time
Pei, Qi, Shin, Seunghee.  2021.  Efficient Split Counter Mode Encryption for NVM. 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS). :93—95.
Emerging non-volatile memory technology enables non-volatile main memory (NVMM) that can provide larger capacity and better energy-saving opportunities than DRAMs. However, its non-volatility raises security concerns, where the data in NVMMs can be taken if the memory is stolen. Memory encryption protects the data by limiting it always stays encrypted outside the processor boundary. However, the decryption latency before the data being used by the processor brings new performance burdens. Unlike DRAM-based main memory, such performance overhead worsens on the NVMM due to the slow latency. In this paper, we will introduce optimizations that can be used to re-design the encryption scheme. In our tests, our two new designs, 3-level split counter mode encryption and 8-block split counter mode encryption, improved performance by 26% and 30% at maximum and by 8% and 9% on average from the original encryption scheme, split counter encryption.
Tseng, Yi-Fan, Gao, Shih-Jie.  2021.  Efficient Subset Predicate Encryption for Internet of Things. 2021 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
With the rapid development of Internet technologies, emerging network environments have been discussed, such as Internet of Things. In this manuscript, we proposed a novel subset predicate encryption for the access control in Internet of Things. Compared with the existing subset predicate encryption schemes, the proposed scheme enjoy the better efficiency due to the short private key and the efficient decryption procedure.
2022-04-19
Wagle, S.K., Bazilraj, A.A, Ray, K.P..  2021.  Energy Efficient Security Solution for Attacks on Wireless Sensor Networks. 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS). :313–318.
Wireless Sensor Networks (WSN) are gaining popularity as being the backbone of Cyber physical systems, IOT and various data acquisition from sensors deployed in remote, inaccessible terrains have remote deployment. However due to remote deployment, WSN is an adhoc network of large number of sensors either heli-dropped in inaccessible terrain like volcanoes, Forests, border areas are highly energy deficient and available in large numbers. This makes it the right soup to become vulnerable to various kinds of Security attacks. The lack of energy and resources makes it deprived of developing a robust security code for mitigation of various kinds of attacks. Many attempts have been made to suggest a robust security Protocol. But these consume so much energy, bandwidth, processing power, memory and other resources that the sole purpose of data gathering from inaccessible terrain from energy deprived sensors gets defeated. This paper makes an attempt to study the types of attacks on different layers of WSN and the examine the recent trends in development of various security protocols to mitigate the attacks. Further, we have proposed a simple, lightweight but powerful security protocol known as Simple Sensor Security Protocol (SSSP), which captures the uniqueness of WSN and its isolation from internet to develop an energy efficient security solution.
2022-02-04
Cao, Wenbin, Qi, Xuanwei, Wang, Song, Chen, Ming, Yin, Xianggen, Wen, Minghao.  2021.  The Engineering Practical Calculation Method of Circulating Current in YD-connected Transformer. 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE). :1–5.
The circulating current in the D-winding may cause primary current waveform distortion, and the reliability of the restraint criterion based on the typical magnetizing inrush current characteristics will be affected. The magnetizing inrush current with typical characteristics is the sum of primary current and circulating current. Using the circulating current to compensate the primary current can improve the reliability of the differential protection. When the phase is not saturated, the magnetizing inrush current is about zero. Therefore, the primary current of unsaturated phase can be replaced by the opposite of the circulating current. Based on this, an engineering practical calculation method for circulating current is proposed. In the method, the segmented primary currents are used to replace the circulating current. Phasor analysis is used to demonstrate the application effect of this method when remanence coefficients are different. The method is simple and practical, and has strong applicability and high reliability. Simulation and recorded waveforms have verified the effectiveness of the method.
2022-07-14
Ahmad, Syed Farhan, Ferjani, Mohamed Yassine, Kasliwal, Keshav.  2021.  Enhancing Security in the Industrial IoT Sector using Quantum Computing. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1—5.
The development of edge computing and machine learning technologies have led to the growth of Industrial IoT systems. Autonomous decision making and smart manufacturing are flourishing in the current age of Industry 4.0. By providing more compute power to edge devices and connecting them to the internet, the so-called Cyber Physical Systems are prone to security threats like never before. Security in the current industry is based on cryptographic techniques that use pseudorandom number keys. Keys generated by a pseudo-random number generator pose a security threat as they can be predicted by a malicious third party. In this work, we propose a secure Industrial IoT Architecture that makes use of true random numbers generated by a quantum random number generator (QRNG). CITRIOT's FireConnect IoT node is used to show the proof of concept in a quantum-safe network where the random keys are generated by a cloud based quantum device. We provide an implementation of QRNG on both real quantum computer and quantum simulator. Then, we compare the results with pseudorandom numbers generated by a classical computer.
2022-02-04
Kuber, Sughosh, Sharma, Mohit, Gonzalez, Abel.  2021.  Factors influencing CT saturation and its implications on Distance Protection Scheme-Analysis and Testing. 2021 74th Conference for Protective Relay Engineers (CPRE). :1–11.
The behavior of the Current Transformer (CTs) is of utmost importance for protection engineers to ensure reliable operation of power system. CT magnetic saturation is a well-known phenomenon when analyzing its performance characteristics. Nevertheless, transient conditions in the system might be different every time. A good understanding of the magnetic saturation of different CT designs and the effect of saturation on the protection schemes is imperative for developing a robust and dependable protection system. In this paper, various factors that affect CT saturation like X/R ratio, large current magnitudes, DC offset, burden and magnetization remanence are discussed. Analysis of CT saturation based on changes to burden and remanence is performed. In addition to that, the effect of saturation due to these factors on distance protection are presented with test results and analysis. Saturation conditions are analyzed on mho distance elements during phase to ground and three phase faults. Finally, a practical approach to efficiently test the performance of protection schemes under CT saturation conditions is proposed using COMTRADE play back. COMTRADE play back files for various scenarios of CT saturation conditions are generated and used for testing the performance of the protection scheme.