Biblio

Found 2393 results

Filters: Keyword is human factors  [Clear All Filters]
2021-11-29
Albó, Laia, Beardsley, Marc, Amarasinghe, Ishari, Hernández-Leo, Davinia.  2020.  Individual versus Computer-Supported Collaborative Self-Explanations: How Do Their Writing Analytics Differ? 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT). :132–134.
Researchers have demonstrated the effectiveness of self-explanations (SE) as an instructional practice and study strategy. However, there is a lack of work studying the characteristics of SE responses prompted by collaborative activities. In this paper, we use writing analytics to investigate differences between SE text responses resulting from individual versus collaborative learning activities. A Coh-Metrix analysis suggests that students in the collaborative SE activity demonstrated a higher level of comprehension. Future research should explore how writing analytics can be incorporated into CSCL systems to support student performance of SE activities.
2021-02-03
Velaora, M., Roy, R. van, Guéna, F..  2020.  ARtect, an augmented reality educational prototype for architectural design. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :110—115.

ARtect is an Augmented Reality application developed with Unity 3D, which envisions an educational interactive and immersive tool for architects, designers, researchers, and artists. This digital instrument renders the competency to visualize custom-made 3D models and 2D graphics in interior and exterior environments. The user-friendly interface offers an accurate insight before the materialization of any architectural project, enabling evaluation of the design proposal. This practice could be integrated into learning architectural design process, saving resources of printed drawings, and 3D carton models during several stages of spatial conception.

2021-01-25
Guri, M..  2020.  CD-LEAK: Leaking Secrets from Audioless Air-Gapped Computers Using Covert Acoustic Signals from CD/DVD Drives. 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC). :808—816.

Air-gapped networks are isolated from the Internet, since they store and process sensitive information. It has been shown that attackers can exfiltrate data from air-gapped networks by sending acoustic signals generated by computer speakers, however this type of covert channel relies on the existence of loudspeakers in the air-gapped environment. In this paper, we present CD-LEAK - a novel acoustic covert channel that works in constrained environments where loudspeakers are not available to the attacker. Malware installed on a compromised computer can maliciously generate acoustic signals via the optical CD/DVD drives. Binary information can then be modulated over the acoustic signals and be picked up by a nearby Internet connected receiver (e.g., a workstation, hidden microphone, smartphone, laptop, etc.). We examine CD/DVD drives and discuss their acoustical characteristics. We also present signal generation and detection, and data modulation and demodulation algorithms. Based on our proposed method, we developed a transmitter and receiver for PCs and smartphones, and provide the design and implementation details. We examine the channel and evaluate it on various optical drives. We also provide a set of countermeasures against this threat - which has been overlooked.

2021-05-05
Jana, Angshuman, Maity, Dipendu.  2020.  Code-based Analysis Approach to Detect and Prevent SQL Injection Attacks. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—6.

Now-a-days web applications are everywhere. Usually these applications are developed by database program which are often written in popular host programming languages such as C, C++, C\#, Java, etc., with embedded Structured Query Language (SQL). These applications are used to access and process crucial data with the help of Database Management System (DBMS). Preserving the sensitive data from any kind of attacks is one of the prime factors that needs to be maintained by the web applications. The SQL injection attacks is one of the important security threat for the web applications. In this paper, we propose a code-based analysis approach to automatically detect and prevent the possible SQL Injection Attacks (SQLIA) in a query before submitting it to the underlying database. This approach analyses the user input by assigning a complex number to each input element. It has two part (i) input clustering and (ii) safe (non-malicious) input identification. We provide a details discussion of the proposal w.r.t the literature on security and execution overhead point of view.

2021-01-15
Zhu, K., Wu, B., Wang, B..  2020.  Deepfake Detection with Clustering-based Embedding Regularization. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). :257—264.

In recent months, AI-synthesized face swapping videos referred to as deepfake have become an emerging problem. False video is becoming more and more difficult to distinguish, which brings a series of challenges to social security. Some scholars are devoted to studying how to improve the detection accuracy of deepfake video. At the same time, in order to conduct better research, some datasets for deepfake detection are made. Companies such as Google and Facebook have also spent huge sums of money to produce datasets for deepfake video detection, as well as holding deepfake detection competitions. The continuous advancement of video tampering technology and the improvement of video quality have also brought great challenges to deepfake detection. Some scholars have achieved certain results on existing datasets, while the results on some high-quality datasets are not as good as expected. In this paper, we propose new method with clustering-based embedding regularization for deepfake detection. We use open source algorithms to generate videos which can simulate distinctive artifacts in the deepfake videos. To improve the local smoothness of the representation space, we integrate a clustering-based embedding regularization term into the classification objective, so that the obtained model learns to resist adversarial examples. We evaluate our method on three latest deepfake datasets. Experimental results demonstrate the effectiveness of our method.

2021-02-03
Martin, S., Parra, G., Cubillo, J., Quintana, B., Gil, R., Perez, C., Castro, M..  2020.  Design of an Augmented Reality System for Immersive Learning of Digital Electronic. 2020 XIV Technologies Applied to Electronics Teaching Conference (TAEE). :1—6.

This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.

Bahaei, S. Sheikh.  2020.  A Framework for Risk Assessment in Augmented Reality-Equipped Socio-Technical Systems. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :77—78.

New technologies, such as augmented reality (AR) are used to enhance human capabilities and extend human functioning; nevertheless they may cause distraction and incorrect human functioning. Systems including socio entities (such as human) and technical entities (such as augmented reality) are called socio-technical systems. In order to do risk assessment in such systems, considering new dependability threats caused by augmented reality is essential, for example failure of an extended human function is a new type of dependability threat introduced to the system because of new technologies. In particular, it is required to identify these new dependability threats and extend modeling and analyzing techniques to be able to uncover their potential impacts. This research aims at providing a framework for risk assessment in AR-equipped socio-technical systems by identifying AR-extended human failures and AR-caused faults leading to human failures. Our work also extends modeling elements in an existing metamodel for modeling socio-technical systems, to enable AR-relevant dependability threats modeling. This extended metamodel is expected to be used for extending analysis techniques to analyze AR-equipped socio-technical systems.

2020-12-17
Sun, P., Garcia, L., Salles-Loustau, G., Zonouz, S..  2020.  Hybrid Firmware Analysis for Known Mobile and IoT Security Vulnerabilities. 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :373—384.

Mobile and IoT operating systems–and their ensuing software updates–are usually distributed as binary files. Given that these binary files are commonly closed source, users or businesses who want to assess the security of the software need to rely on reverse engineering. Further, verifying the correct application of the latest software patches in a given binary is an open problem. The regular application of software patches is a central pillar for improving mobile and IoT device security. This requires developers, integrators, and vendors to propagate patches to all affected devices in a timely and coordinated fashion. In practice, vendors follow different and sometimes improper security update agendas for both mobile and IoT products. Moreover, previous studies revealed the existence of a hidden patch gap: several vendors falsely reported that they patched vulnerabilities. Therefore, techniques to verify whether vulnerabilities have been patched or not in a given binary are essential. Deep learning approaches have shown to be promising for static binary analyses with respect to inferring binary similarity as well as vulnerability detection. However, these approaches fail to capture the dynamic behavior of these systems, and, as a result, they may inundate the analysis with false positives when performing vulnerability discovery in the wild. In particular, they cannot capture the fine-grained characteristics necessary to distinguish whether a vulnerability has been patched or not. In this paper, we present PATCHECKO, a vulnerability and patch presence detection framework for executable binaries. PATCHECKO relies on a hybrid, cross-platform binary code similarity analysis that combines deep learning-based static binary analysis with dynamic binary analysis. PATCHECKO does not require access to the source code of the target binary nor that of vulnerable functions. We evaluate PATCHECKO on the most recent Google Pixel 2 smartphone and the Android Things IoT firmware images, within which 25 known CVE vulnerabilities have been previously reported and patched. Our deep learning model shows a vulnerability detection accuracy of over 93%. We further prune the candidates found by the deep learning stage–which includes false positives–via dynamic binary analysis. Consequently, PATCHECKO successfully identifies the correct matches among the candidate functions in the top 3 ranked outcomes 100% of the time. Furthermore, PATCHECKO's differential engine distinguishes between functions that are still vulnerable and those that are patched with an accuracy of 96%.

2021-01-25
Zhang, J., Ji, X., Xu, W., Chen, Y.-C., Tang, Y., Qu, G..  2020.  MagView: A Distributed Magnetic Covert Channel via Video Encoding and Decoding. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :357—366.

Air-gapped networks achieve security by using the physical isolation to keep the computers and network from the Internet. However, magnetic covert channels based on CPU utilization have been proposed to help secret data to escape the Faraday-cage and the air-gap. Despite the success of such cover channels, they suffer from the high risk of being detected by the transmitter computer and the challenge of installing malware into such a computer. In this paper, we propose MagView, a distributed magnetic cover channel, where sensitive information is embedded in other data such as video and can be transmitted over the air-gapped internal network. When any computer uses the data such as playing the video, the sensitive information will leak through the magnetic covert channel. The "separation" of information embedding and leaking, combined with the fact that the covert channel can be created on any computer, overcomes these limitations. We demonstrate that CPU utilization for video decoding can be effectively controlled by changing the video frame type and reducing the quantization parameter without video quality degradation. We prototype MagView and achieve up to 8.9 bps throughput with BER as low as 0.0057. Experiments under different environment are conducted to show the robustness of MagView. Limitations and possible countermeasures are also discussed.

2021-03-09
Liu, G., Quan, W., Cheng, N., Lu, N., Zhang, H., Shen, X..  2020.  P4NIS: Improving network immunity against eavesdropping with programmable data planes. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :91—96.

Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.

2020-12-17
Kumar, R., Sarupria, G., Panwala, V., Shah, S., Shah, N..  2020.  Power Efficient Smart Home with Voice Assistant. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—5.

The popularity and demand of home automation has increased exponentially in recent years because of the ease it provides. Recently, development has been done in this domain and few systems have been proposed that either use voice assistants or application for controlling the electrical appliances. However; less emphasis is laid on power efficiency and this system cannot be integrated with the existing appliances and hence, the entire system needs to be upgraded adding to a lot of additional cost in purchasing new appliances. In this research, the objective is to design such a system that emphasises on power efficiency as well as can be integrated with the already existing appliances. NodeMCU, along with Raspberry Pi, Firebase realtime database, is used to create a system that accomplishes such endeavours and can control relays, which can control these appliances without the need of replacing them. The experiments in this paper demonstrate triggering of electrical appliances using voice assistant, fire alarm on the basis of flame sensor and temperature sensor. Moreover; use of android application was presented for operating electrical appliances from a remote location. Lastly, the system can be modified by adding security cameras, smart blinds, robot vacuums etc.

2021-07-08
Cao, Yetong, Zhang, Qian, Li, Fan, Yang, Song, Wang, Yu.  2020.  PPGPass: Nonintrusive and Secure Mobile Two-Factor Authentication via Wearables. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1917—1926.
{Mobile devices are promising to apply two-factor authentication in order to improve system security and enhance user privacy-preserving. Existing solutions usually have certain limits of requiring some form of user effort, which might seriously affect user experience and delay authentication time. In this paper, we propose PPGPass, a novel mobile two-factor authentication system, which leverages Photoplethysmography (PPG) sensors in wrist-worn wearables to extract individual characteristics of PPG signals. In order to realize both nonintrusive and secure, we design a two-stage algorithm to separate clean heartbeat signals from PPG signals contaminated by motion artifacts, which allows verifying users without intentionally staying still during the process of authentication. In addition, to deal with non-cancelable issues when biometrics are compromised, we design a repeatable and non-invertible method to generate cancelable feature templates as alternative credentials, which enables to defense against man-in-the-middle attacks and replay attacks. To the best of our knowledge, PPGPass is the first nonintrusive and secure mobile two-factor authentication based on PPG sensors in wearables. We build a prototype of PPGPass and conduct the system with comprehensive experiments involving multiple participants. PPGPass can achieve an average F1 score of 95.3%, which confirms its high effectiveness, security, and usability}.
2021-03-29
Juyal, S., Sharma, S., Harbola, A., Shukla, A. S..  2020.  Privacy and Security of IoT based Skin Monitoring System using Blockchain Approach. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). :1—5.

Remote patient monitoring is a system that focuses on patients care and attention with the advent of the Internet of Things (IoT). The technology makes it easier to track distance, but also to diagnose and provide critical attention and service on demand so that billions of people are safer and more safe. Skincare monitoring is one of the growing fields of medical care which requires IoT monitoring, because there is an increasing number of patients, but cures are restricted to the number of available dermatologists. The IoT-based skin monitoring system produces and store volumes of private medical data at the cloud from which the skin experts can access it at remote locations. Such large-scale data are highly vulnerable and otherwise have catastrophic results for privacy and security mechanisms. Medical organizations currently do not concentrate much on maintaining safety and privacy, which are of major importance in the field. This paper provides an IoT based skin surveillance system based on a blockchain data protection and safety mechanism. A secure data transmission mechanism for IoT devices used in a distributed architecture is proposed. Privacy is assured through a unique key to identify each user when he registers. The principle of blockchain also addresses security issues through the generation of hash functions on every transaction variable. We use blockchain consortiums that meet our criteria in a decentralized environment for controlled access. The solutions proposed allow IoT based skin surveillance systems to privately and securely store and share medical data over the network without disturbance.

2021-06-30
Biroon, Roghieh A., Pisu, Pierluigi, Abdollahi, Zoleikha.  2020.  Real-time False Data Injection Attack Detection in Connected Vehicle Systems with PDE modeling. 2020 American Control Conference (ACC). :3267—3272.
Connected vehicles as a promising concept of Intelligent Transportation System (ITS), are a potential solution to address some of the existing challenges of emission, traffic congestion as well as fuel consumption. To achieve these goals, connectivity among vehicles through the wireless communication network is essential. However, vehicular communication networks endure from reliability and security issues. Cyber-attacks with purposes of disrupting the performance of the connected vehicles, lead to catastrophic collision and traffic congestion. In this study, we consider a platoon of connected vehicles equipped with Cooperative Adaptive Cruise Control (CACC) which are subjected to a specific type of cyber-attack namely "False Data Injection" attack. We developed a novel method to model the attack with ghost vehicles injected into the connected vehicles network to disrupt the performance of the whole system. To aid the analysis, we use a Partial Differential Equation (PDE) model. Furthermore, we present a PDE model-based diagnostics scheme capable of detecting the false data injection attack and isolating the injection point of the attack in the platoon system. The proposed scheme is designed based on a PDE observer with measured velocity and acceleration feedback. Lyapunov stability theory has been utilized to verify the analytically convergence of the observer under no attack scenario. Eventually, the effectiveness of the proposed algorithm is evaluated with simulation study.
2021-07-08
Li, Jiawei, Wang, Chuyu, Li, Ang, Han, Dianqi, Zhang, Yan, Zuo, Jinhang, Zhang, Rui, Xie, Lei, Zhang, Yanchao.  2020.  RF-Rhythm: Secure and Usable Two-Factor RFID Authentication. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2194—2203.
Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user's tapping rhythm. In addition to verifying the RFID card's identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user's secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.
2021-05-05
Block, Matthew, Barcaskey, Benjamin, Nimmo, Andrew, Alnaeli, Saleh, Gilbert, Ian, Altahat, Zaid.  2020.  Scalable Cloud-Based Tool to Empirically Detect Vulnerable Code Patterns in Large-Scale System. 2020 IEEE International Conference on Electro Information Technology (EIT). :588—592.
Open-source development is a well-accepted model by software development communities from both academia and industry. Many companies and corporations adopt and use open source systems daily as a core component in their business activities. One of the most important factors that will determine the success of this model is security. The security of software systems is a combination of source code quality, stability, and vulnerabilities. Software vulnerabilities can be introduced by many factors, some of which are the way that programmers write their programs, their background on security standards, and safe programming practices. This paper describes a cloud-based software tool developed by the authors that can help our computing communities in both academia and research to evaluate their software systems on the source code level to help them identify and detect some of the well-known source code vulnerability patterns that can cause security issues if maliciously exploited. The paper also presents an empirical study on the prevalence of vulnerable C/C++ coding patterns inside three large-scale open-source systems comprising more than 42 million lines of source code. The historical data for the studied systems is presented over five years to uncover some historical trends to highlight the changes in the system analyzed over time concerning the presence of some of the source code vulnerabilities patterns. The majority of results show the continued usage of known unsafe functions.
2021-07-08
SAMMOUD, Amal, CHALOUF, Mohamed Aymen, HAMDI, Omessaad, MONTAVONT, Nicolas, Bouallègue, Ammar.  2020.  A secure and lightweight three-factor authentication and key generation scheme for direct communication between healthcare professionals and patient’s WMSN. 2020 IEEE Symposium on Computers and Communications (ISCC). :1—6.
One of the main security issues in telecare medecine information systems is the remote user authentication and key agreement between healthcare professionals and patient's medical sensors. Many of the proposed approaches are based on multiple factors (password, token and possibly biometrics). Two-factor authentication protocols do not resist to many possible attacks. As for three-factor authentication schemes, they usually come with high resource consumption. Since medical sensors have limited storage and computational capabilities, ensuring a minimal resources consumption becomes a major concern in this context. In this paper, we propose a secure and lightweight three-factor authentication and key generation scheme for securing communications between healtcare professional and patient's medical sensors. Thanks to formal verification, we prove that this scheme is robust enough against known possible attacks. A comparison with the most relevant related work's schemes shows that our protocol ensures an optimised resource consumption level.
2021-01-25
More, S., Jamadar, I., Kazi, F..  2020.  Security Visualization and Active Querying for OT Network. :1—6.

Traditionally Industrial Control System(ICS) used air-gap mechanism to protect Operational Technology (OT) networks from cyber-attacks. As internet is evolving and so are business models, customer supplier relationships and their needs are changing. Hence lot of ICS are now connected to internet by providing levels of defense strategies in between OT network and business network to overcome the traditional mechanism of air-gap. This upgrade made OT networks available and accessible through internet. OT networks involve number of physical objects and computer networks. Physical damages to system have become rare but the number of cyber-attacks occurring are evidently increasing. To tackle cyber-attacks, we have a number of measures in place like Firewalls, Intrusion Detection System (IDS) and Intrusion Prevention System (IPS). To ensure no attack on or suspicious behavior within network takes place, we can use visual aids like creating dashboards which are able to flag any such activity and create visual alert about same. This paper describes creation of parser object to convert Common Event Format(CEF) to Comma Separated Values(CSV) format and dashboard to extract maximum amount of data and analyze network behavior. And working of active querying by leveraging packet level data from network to analyze network inclusion in real-time. The mentioned methodology is verified on data collected from Waste Water Treatment Plant and results are presented.,} booktitle = {2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT)

2021-03-09
Wilkens, F., Fischer, M..  2020.  Towards Data-Driven Characterization of Brute-Force Attackers. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

Brute-force login attempts are common for every host on the public Internet. While most of them can be discarded as low-threat attacks, targeted attack campaigns often use a dictionary-based brute-force attack to establish a foothold in the network. Therefore, it is important to characterize the attackers' behavior to prioritize defensive measures and react to new threats quickly. In this paper we present a set of metrics that can support threat hunters in characterizing brute-force login attempts. Based on connection metadata, timing information, and the attacker's dictionary these metrics can help to differentiate scans and to find common behavior across distinct IP addresses. We evaluated our novel metrics on a real-world data set of malicious login attempts collected by our honeypot Honeygrove. We highlight interesting metrics, show how clustering can be leveraged to reveal common behavior across IP addresses, and describe how selected metrics help to assess the threat level of attackers. Amongst others, we for example found strong indicators for collusion between ten otherwise unrelated IP addresses confirming that a clustering of the right metrics can help to reveal coordinated attacks.

2021-03-04
Wang, L..  2020.  Trusted Connect Technology of Bioinformatics Authentication Cloud Platform Based on Point Set Topology Transformation Theory. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :151—154.
The bioinformatics features are collected by pattern recognition technology, and the digital coding and format conversion of the feature data are realized by using the theory of topological group transformation. Authentication and Signature based on Zero Knowledge Proof Technology can be used as the trusted credentials of cloud platform and cannot be forged, thus realizing trusted and secure access.
2021-09-30
Liu, Jianwei, Zou, Xiang, Han, Jinsong, Lin, Feng, Ren, Kui.  2020.  BioDraw: Reliable Multi-Factor User Authentication with One Single Finger Swipe. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Multi-factor user authentication (MFUA) becomes increasingly popular due to its superior security comparing with single-factor user authentication. However, existing MFUAs require multiple interactions between users and different authentication components when sensing the multiple factors, leading to extra overhead and bad use experiences. In this paper, we propose a secure and user-friendly MFUA system, namely BioDraw, which utilizes four categories of biometrics (impedance, geometry, composition, and behavior) of human hand plus the pattern-based password to identify and authenticate users. A user only needs to draw a pattern on a RFID tag array, while four biometrics can be simultaneously collected. Particularly, we design a gradient-based pattern recognition algorithm for pattern recognition and then a CNN-LSTM-based classifier for user recognition. Furthermore, to guarantee the systemic security, we propose a novel anti-spoofing scheme, called Binary ALOHA, which utilizes the inhabit randomness of RFID systems. We perform extensive experiments over 21 volunteers. The experiment result demonstrates that BioDraw can achieve a high authentication accuracy (with a false reject rate less than 2%) and is effective in defending against various attacks.
2021-01-15
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S..  2020.  Celeb-DF: A Large-Scale Challenging Dataset for DeepFake Forensics. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :3204—3213.
AI-synthesized face-swapping videos, commonly known as DeepFakes, is an emerging problem threatening the trustworthiness of online information. The need to develop and evaluate DeepFake detection algorithms calls for datasets of DeepFake videos. However, current DeepFake datasets suffer from low visual quality and do not resemble DeepFake videos circulated on the Internet. We present a new large-scale challenging DeepFake video dataset, Celeb-DF, which contains 5,639 high-quality DeepFake videos of celebrities generated using improved synthesis process. We conduct a comprehensive evaluation of DeepFake detection methods and datasets to demonstrate the escalated level of challenges posed by Celeb-DF.
2021-08-11
McKeown, Sean, Russell, Gordon.  2020.  Forensic Considerations for the High Efficiency Image File Format (HEIF). 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—8.
The High Efficiency File Format (HEIF) was adopted by Apple in 2017 as their favoured means of capturing images from their camera application, with Android devices such as the Galaxy S10 providing support more recently. The format is positioned to replace JPEG as the de facto image compression file type, touting many modern features and better compression ratios over the aging standard. However, while millions of devices across the world are already able to produce HEIF files, digital forensics research has not given the format much attention. As HEIF is a complex container format, much different from traditional still picture formats, this leaves forensics practitioners exposed to risks of potentially mishandling evidence. This paper describes the forensically relevant features of the HEIF format, including those which could be used to hide data, or cause issues in an investigation, while also providing commentary on the state of software support for the format. Finally, suggestions for current best-practice are provided, before discussing the requirements of a forensically robust HEIF analysis tool.
Qadir, Abdalbasit Mohammed, Cooper, Peter.  2020.  GPS-based Mobile Cross-platform Cargo Tracking System with Web-based Application. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—7.
Cross-platform development is becoming widely used by developers, and writing for separate platforms is being replaced by developing a single code base that will work across multiple platforms simultaneously, while reducing cost and time. The purpose of this paper is to demonstrate cross-platform development by creating a cargo tracking system that will work on multiple platforms with web application by tracking cargo using Global Positioning System (GPS), since the transport business has played a vital role in the evolution of human civilization. In this system, Google Flutter technology is used to create a mobile application that works on both Android and iOS platforms at the same time, by providing maps to clients showing their cargo location using Google Map API, as well as providing a web-based application.
2021-02-01
Zhang, Y., Liu, J., Shang, T., Wu, W..  2020.  Quantum Homomorphic Encryption Based on Quantum Obfuscation. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2010–2015.
Homomorphic encryption enables computation on encrypted data while maintaining secrecy. This leads to an important open question whether quantum computation can be delegated and verified in a non-interactive manner or not. In this paper, we affirmatively answer this question by constructing the quantum homomorphic encryption scheme with quantum obfuscation. It takes advantage of the interchangeability of the unitary operator, and exchanges the evaluation operator and the encryption operator by means of equivalent multiplication to complete homomorphic encryption. The correctness of the proposed scheme is proved theoretically. The evaluator does not know the decryption key and does not require a regular interaction with a user. Because of key transmission after quantum obfuscation, the encrypting party and the decrypting party can be different users. The output state has the property of complete mixture, which guarantees the scheme security. Moreover, the security level of the quantum homomorphic encryption scheme depends on quantum obfuscation and encryption operators.