Biblio
Mixed reality (MR) technologies are widely used in distributed collaborative learning scenarios and have made learning and training more flexible and intuitive. However, there are many challenges in the use of MR due to the difficulty in creating a physical presence, particularly when a physical task is being performed collaboratively. We therefore developed a novel MR system to overcomes these limitations and enhance the distributed collaboration user experience. The primary objective of this paper is to explore the potential of a MR-based hand gestures system to enhance the conceptual architecture of MR in terms of both visualization and interaction in distributed collaboration. We propose a synchronous prototype named MRCollab as an immersive collaborative approach that allows two or more users to communicate with a peer based on the integration of several technologies such as video, audio, and hand gestures.
A study case of electric power distribution system fault recovery has been introduced in this article. With proper connections, network reconfiguration should be considered an effective solution to the system fault condition. Considering the radial structure of the distribution system, appropriate observation on visualized outcome of the voltage profile can lead the system operator to obtain the best switching line effectively. Contour plots are applied for visualizing the voltage profiles of a modified IEEE 13-node test feeder model.
The recent success of brain-inspired deep neural networks (DNNs) in solving complex, high-level visual tasks has led to rising expectations for their potential to match the human visual system. However, DNNs exhibit idiosyncrasies that suggest their visual representation and processing might be substantially different from human vision. One limitation of DNNs is that they are vulnerable to adversarial examples, input images on which subtle, carefully designed noises are added to fool a machine classifier. The robustness of the human visual system against adversarial examples is potentially of great importance as it could uncover a key mechanistic feature that machine vision is yet to incorporate. In this study, we compare the visual representations of white- and black-box adversarial examples in DNNs and humans by leveraging functional magnetic resonance imaging (fMRI). We find a small but significant difference in representation patterns for different (i.e. white- versus black-box) types of adversarial examples for both humans and DNNs. However, human performance on categorical judgment is not degraded by noise regardless of the type unlike DNN. These results suggest that adversarial examples may be differentially represented in the human visual system, but unable to affect the perceptual experience.
The goal of content-based recommendation system is to retrieve and rank the list of items that are closest to the query item. Today, almost every e-commerce platform has a recommendation system strategy for products that customers can decide to buy. In this paper we describe our work on creating a Generative Adversarial Network based image retrieval system for e-commerce platforms to retrieve best similar images for a given product image specifically for shoes. We compare state-of-the-art solutions and provide results for the proposed deep learning network on a standard data set.
In the past few years, visual information collection and transmission is increased significantly for various applications. Smart vehicles, service robotic platforms and surveillance cameras for the smart city applications are collecting a large amount of visual data. The preservation of the privacy of people presented in this data is an important factor in storage, processing, sharing and transmission of visual data across the Internet of Robotic Things (IoRT). In this paper, a novel anonymisation method for information security and privacy preservation in visual data in sharing layer of the Web of Robotic Things (WoRT) is proposed. The proposed framework uses deep neural network based semantic segmentation to preserve the privacy in video data base of the access level of the applications and users. The data is anonymised to the applications with lower level access but the applications with higher legal access level can analyze and annotated the complete data. The experimental results show that the proposed method while giving the required access to the authorities for legal applications of smart city surveillance, is capable of preserving the privacy of the people presented in the data.
To prevent unauthorized access to adversaries, strong authentication scheme is a vital security requirement in client-server inter-networking systems. These schemes must verify the legitimacy of such users in real-time environments and establish a dynamic session key fur subsequent communication. Of late, T. H. Chen and J. C. Huang proposed a two-factor authentication framework claiming that the scheme is secure against most of the existing attacks. However we have shown that Chen and Huang scheme have many critical weaknesses in real-time environments. The scheme is prone to man in the middle attack and information leakage attack. Furthermore, the scheme does not provide two essential security services such user anonymity and session key establishment. In this paper, we present an enhanced user participating authenticating scheme which overcomes all the weaknesses of Chen et al.'s scheme and provide most of the essential security features.
Classifying malware programs is a research area attracting great interest for Anti-Malware industry. In this research, we propose a system that visualizes malware programs as images and distinguishes those using Convolutional Neural Networks (CNNs). We study the performance of several well-established CNN based algorithms such as AlexNet, ResNet and VGG16 using transfer learning approaches. We also propose a computationally efficient CNN-based architecture for classification of malware programs. In addition, we study the performance of these CNNs as feature extractors by using Support Vector Machine (SVM) and K-nearest Neighbors (kNN) for classification purposes. We also propose fusion methods to boost the performance further. We make use of the publicly available database provided by Microsoft Malware Classification Challenge (BIG 2015) for this study. Our overall performance is 99.4% for a set of 2174 test samples comprising 9 different classes thereby setting a new benchmark.
This work presents the design and implementation of a large curved display system in a virtual reality (VR) environment that supports visualization of 2D datasets (e.g., images, buttons and text). By using this system, users are allowed to interact with data in front of a wide field of view and gain a high level of perceived immersion. We exhibit two use cases of this system, including (1) a virtual image wall as the display component of a 3D user interface, and (2) an inventory interface for a VR-based educational game. The use cases demonstrate capability and flexibility of curved displays in supporting varied purposes of data interaction within virtual environments.
Today's software is full of security vulnerabilities that invite attack. Attackers are especially drawn to software systems containing sensitive data. For such systems, this paper presents a modeling approach especially suited for Serum or other forms of agile development to identify and reduce the attack surface. The latter arises due to the locations containing sensitive data within the software system that are reachable by attackers. The approach reduces the attack surface by changing the design so that the number of such locations is reduced. The approach performs these changes on a visual model of the software system. The changes are then considered for application to the actual system to improve its security.
Now-a-days, video steganography has developed for a secured communication among various users. The two important factor of steganography method are embedding potency and embedding payload. Here, a Multiple Object Tracking (MOT) algorithmic programs used to detect motion object, also shows foreground mask. Discrete wavelet Transform (DWT) and Discrete Cosine Transform (DCT) are used for message embedding and extraction stage. In existing system Least significant bit method was proposed. This technique of hiding data may lose some data after some file transformation. The suggested Multiple object tracking algorithm increases embedding and extraction speed, also protects secret message against various attackers.
With the rapid development of the Internet, the dark network has also been widely used in the Internet [1]. Due to the anonymity of the dark network, many illegal elements have committed illegal crimes on the dark. It is difficult for law enforcement officials to track the identity of these cyber criminals using traditional network survey techniques based on IP addresses [2]. The threat information is mainly from the dark web forum and the dark web market. In this paper, we introduce the current mainstream dark network communication system TOR and develop a visual dark web forum post association analysis system to graphically display the relationship between various forum messages and posters, and help law enforcement officers to explore deep levels. Clues to analyze crimes in the dark network.
FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario with military applications, connecting tankers, soldiers and drones to form Internet-of-Battlefield-Things (IoBT). Computing, storage and communication resources in IoBT are limited during certain situations in IoBT. Under these circumstances, these resources should be carefully combined to handle the task to accomplish the mission. FastChain simulator uses Sharding approach to provide an efficient solution to combine resources of IoBT devices by identifying the correct and the best set of IoBT devices for a given scenario. Then, the set of IoBT devices for a given scenario collaborate together for sharding enabled Blockchain technology. Interested researchers, policy makers and developers can download and use the FastChain simulator to design, develop and evaluate blockchain enabled IoBT scenarios that helps make robust and trustworthy informed decisions in mission-critical IoBT environment.
With rapid growth of network size and complexity, network defenders are facing more challenges in protecting networked computers and other devices from acute attacks. Traffic visualization is an essential element in an anomaly detection system for visual observations and detection of distributed DoS attacks. This paper presents an interactive visualization system called TVis, proposed to detect both low-rate and highrate DDoS attacks using Heron's triangle-area mapping. TVis allows network defenders to identify and investigate anomalies in internal and external network traffic at both online and offline modes. We model the network traffic as an undirected graph and compute triangle-area map based on incidences at each vertex for each 5 seconds time window. The system triggers an alarm iff the system finds an area of the mapped triangle beyond the dynamic threshold. TVis performs well for both low-rate and high-rate DDoS detection in comparison to its competitors.
Malicious software, known as malware, has become urgently serious threat for computer security, so automatic mal-ware classification techniques have received increasing attention. In recent years, deep learning (DL) techniques for computer vision have been successfully applied for malware classification by visualizing malware files and then using DL to classify visualized images. Although DL-based classification systems have been proven to be much more accurate than conventional ones, these systems have been shown to be vulnerable to adversarial attacks. However, there has been little research to consider the danger of adversarial attacks to visualized image-based malware classification systems. This paper proposes an adversarial attack method based on the gradient to attack image-based malware classification systems by introducing perturbations on resource section of PE files. The experimental results on the Malimg dataset show that by a small interference, the proposed method can achieve success attack rate when challenging convolutional neural network malware classifiers.
Model explanations based on pure observational data cannot compute the effects of features reliably, due to their inability to estimate how each factor alteration could affect the rest. We argue that explanations should be based on the causal model of the data and the derived intervened causal models, that represent the data distribution subject to interventions. With these models, we can compute counterfactuals, new samples that will inform us how the model reacts to feature changes on our input. We propose a novel explanation methodology based on Causal Counterfactuals and identify the limitations of current Image Generative Models in their application to counterfactual creation.