Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2017-03-20
Shi, Yang, Zhang, Yaoxue, Zhou, Fangfang, Zhao, Ying, Wang, Guojun, Shi, Ronghua, Liang, Xing.  2016.  IDSPlanet: A Novel Radial Visualization of Intrusion Detection Alerts. Proceedings of the 9th International Symposium on Visual Information Communication and Interaction. :25–29.

In this article, we present a novel radial visualization of IDS alerts, named IDSPlanet, which helps administrators identify false positives, analyze attack patterns, and understand evolving network conditions. Inspired by celestial bodies, IDSPlanet is composed of Chrono Rings, Alert Continents, and Interactive Core. These components correspond with temporal features of alert types, patterns of behavior in affected hosts, and correlations amongst alert types, attackers and targets. The visualization provides an informative picture for the status of the network. In addition, IDSPlanet offers different interactions and monitoring modes, which allow users to interact with high-interest individuals in detail as well as to explore overall pattern.

Shi, Yang, Zhang, Yaoxue, Zhou, Fangfang, Zhao, Ying, Wang, Guojun, Shi, Ronghua, Liang, Xing.  2016.  IDSPlanet: A Novel Radial Visualization of Intrusion Detection Alerts. Proceedings of the 9th International Symposium on Visual Information Communication and Interaction. :25–29.

In this article, we present a novel radial visualization of IDS alerts, named IDSPlanet, which helps administrators identify false positives, analyze attack patterns, and understand evolving network conditions. Inspired by celestial bodies, IDSPlanet is composed of Chrono Rings, Alert Continents, and Interactive Core. These components correspond with temporal features of alert types, patterns of behavior in affected hosts, and correlations amongst alert types, attackers and targets. The visualization provides an informative picture for the status of the network. In addition, IDSPlanet offers different interactions and monitoring modes, which allow users to interact with high-interest individuals in detail as well as to explore overall pattern.

2017-06-27
Borba, Eduardo Zilles, Cabral, Marcio, Montes, Andre, Belloc, Olavo, Zuffo, Marcelo.  2016.  Immersive and Interactive Procedure Training Simulator for High Risk Power Line Maintenance. ACM SIGGRAPH 2016 VR Village. :7:1–7:1.

This project shows a procedure-training simulator targeted at the operation and maintenance of overland distribution power lines. This simulator is focused on workplace safety and risk assessment of common daily operations such as fuse replacement and power cut activities. The training system is implemented using VR goggles (Oculus Rift) and a mixture of a real scenario matched perfectly with its Virtual Reality counterpart. The real scenario is composed of a real "basket" and a stick - both of the equipment is the actual ones used in daily training. Both, equipment are tracked by high precision infrared cameras system (OptiTrack) providing a high degree of immersion and realism. In addition to tracking the scenario, the user is completely tracked: heads, shoulders, arms and hands are tracked. This tracking allows a perfect simulation of the participant's movements in the Virtual World. This allows precise evaluation of movements as well as ergonomics. The virtual scenario was carefully designed to accurately reproduce in a coherent way all relevant spatial, architectonic and natural features typical of the urban environment, reflecting the variety of challenges that real cities might impose on the activity. The system consists of two modules: the first module being Instructor Interface, which will help create and control different challenging scenarios and follow the student's reactions and behavior; and the second module is the simulator itself, which will be presented to the student through VR goggles. The training session can also be viewed on a projected screen by other students, enabling learning through observation of mistakes and successes of their peers, such as a martial arts dojo. The simulator features various risk scenarios such as: different climates - sun, rain and wind; different lighting conditions - day, night and artificial; different types of electrical structures; transformer fire and explosion; short-circuit and electric arc; defective equipment; many obstacles - trees, cars, windows, swarm of bees, etc.

Tsai, Wan-Lun, Hsu, You-Lun, Lin, Chi-Po, Zhu, Chen-Yu, Chen, Yu-Cheng, Hu, Min-Chun.  2016.  Immersive Virtual Reality with Multimodal Interaction and Streaming Technology. Proceedings of the 18th ACM International Conference on Multimodal Interaction. :416–416.

In this demo, we present an immersive virtual reality (VR) system which integrates multimodal interaction sensors (i.e., smartphone, Kinect v2, and Myo armband) and streaming technology to improve the VR experience. The integrated system solves the common problems in most VR systems: (1) the very limited playing area due to transmission cable between computer and display/interaction devices, and (2) non-intuitive way of controlling virtual objects. We use Unreal Engine 4 to develop an immersive VR game with 6 interactive levels to demonstrate the feasibility of our system. In the game, the user not only can freely walk within a large playing area surrounded by multiple Kinect sensors but also select the virtual objects to grab and throw with the Myo armband. The experiment shows that our idea is workable for VR experience.

2017-05-17
Bhattacharya, Debasis, Canul, Mario, Knight, Saxon.  2016.  Impact of the Physical Web and BLE Beacons. Proceedings of the 5th Annual Conference on Research in Information Technology. :53–53.

The Physical Web is a project announced by Google's Chrome team that essentially provides a framework to discover "smart" physical objects (e.g. vending machines, classroom, conference room, cafeteria etc.) and interact with specific, contextual content without having to resort to downloading a specific app. A common app such as the open source and freely available Physical Web app on the Google Play Store or the BKON Browser on the Apple App Store, can access nearby beacons. A current work-in-progress at the University of Maui College is developing a campus-wide prototype of beacon technology using Eddystone-URL and EID protocol from various beacon vendors.

2017-11-27
Weerathunga, P. E., Cioraca, A..  2016.  The importance of testing Smart Grid IEDs against security vulnerabilities. 2016 69th Annual Conference for Protective Relay Engineers (CPRE). :1–21.

As the Smart Grid becomes highly interconnected, the power protection, control, and monitoring functions of the grid are increasingly relying on the communications infrastructure, which has seen rapid growth. At the same time concerns regarding cyber threats have attracted significant attention towards the security of power systems. A properly designed security attack against the power grid can cause catastrophic damages to equipment and create large scale power outages. The smart grid consists of critical IEDs, which are considered high priority targets for malicious security attacks. For this reason it is very important to design the IEDs from the beginning with cyber security in mind, starting with the selection of hardware and operating systems, so that all facets of security are addressed and the product is robust and can stand attacks. Fact is that the subject of cyber security is vast and it covers many aspects. This paper focuses mainly on one of these aspects, namely the aspect of IED firmware system testing from the security point of view. The paper discusses practical aspects of IED security testing, and introduces the reader to types of vulnerability exploitations on the IED communication stack and SCADA applications, practical aspects of security testing, the importance of early vulnerability detection and ways in which the security testing helps towards regulatory standards compliance, such as NERC-CIP. Finally, based on the results from the simulated attacks, the paper discusses the importance of good security practices in design and coding, so that the potential to introduce vulnerabilities is kept to a minimum. Designing with security in mind also includes good security practices, both in design and coding, and adequate policies for the software development process. Critical software development milestones must be established, such as design and test documentation review, code review, unit, integration and system testing.

2017-05-17
Walter, Charles, Hale, Matthew L., Gamble, Rose F..  2016.  Imposing Security Awareness on Wearables. Proceedings of the 2Nd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :29–35.

Bluetooth reliant devices are increasingly proliferating into various industry and consumer sectors as part of a burgeoning wearable market that adds convenience and awareness to everyday life. Relying primarily on a constantly changing hop pattern to reduce data sniffing during transmission, wearable devices routinely disconnect and reconnect with their base station (typically a cell phone), causing a connection repair each time. These connection repairs allow an adversary to determine what local wearable devices are communicating to what base stations. In addition, data transmitted to a base station as part of a wearable app may be forwarded onward to an awaiting web API even if the base station is in an insecure environment (e.g. a public Wi-Fi). In this paper, we introduce an approach to increase the security and privacy associated with using wearable devices by imposing transmission changes given situational awareness of the base station. These changes are asserted via policy rules based on the sensor information from the wearable devices collected and aggregated by the base system. The rules are housed in an application on the base station that adapts the base station to a state in which it prevents data from being transmitted by the wearable devices without disconnecting the devices. The policies can be updated manually or through an over the air update as determined by the user.

2017-05-30
Srinivasan, Venkatesh, Reps, Thomas.  2016.  An Improved Algorithm for Slicing Machine Code. Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications. :378–393.

Machine-code slicing is an important primitive for building binary analysis and rewriting tools, such as taint trackers, fault localizers, and partial evaluators. However, it is not easy to create a machine-code slicer that exhibits a high level of precision. Moreover, the problem of creating such a tool is compounded by the fact that a small amount of local imprecision can be amplified via cascade effects. Most instructions in instruction sets such as Intel's IA-32 and ARM are multi-assignments: they have several inputs and several outputs (registers, flags, and memory locations). This aspect of the instruction set introduces a granularity issue during slicing: there are often instructions at which we would like the slice to include only a subset of the instruction's semantics, whereas the slice is forced to include the entire instruction. Consequently, the slice computed by state-of-the-art tools is very imprecise, often including essentially the entire program. This paper presents an algorithm to slice machine code more accurately. To counter the granularity issue, our algorithm performs slicing at the microcode level, instead of the instruction level, and obtains a more precise microcode slice. To reconstitute a machine-code program from a microcode slice, our algorithm uses machine-code synthesis. Our experiments on IA-32 binaries of FreeBSD utilities show that, in comparison to slices computed by a state-of-the-art tool, our algorithm reduces the size of backward slices by 33%, and forward slices by 70%.

2017-09-05
Tan, Yong Kiam, Xu, Xinxing, Liu, Yong.  2016.  Improved Recurrent Neural Networks for Session-based Recommendations. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. :17–22.

Recurrent neural networks (RNNs) were recently proposed for the session-based recommendation task. The models showed promising improvements over traditional recommendation approaches. In this work, we further study RNN-based models for session-based recommendations. We propose the application of two techniques to improve model performance, namely, data augmentation, and a method to account for shifts in the input data distribution. We also empirically study the use of generalised distillation, and a novel alternative model that directly predicts item embeddings. Experiments on the RecSys Challenge 2015 dataset demonstrate relative improvements of 12.8% and 14.8% over previously reported results on the Recall@20 and Mean Reciprocal Rank@20 metrics respectively.

2017-05-30
Shelke, Priya M., Prasad, Rajesh S..  2016.  Improving JPEG Image Anti-forensics. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :75:1–75:5.

This paper proposes a forensic method for identifying whether an image was previously compressed by JPEG and also proposes an improved anti-forensics method to enhance the quality of noise added image. Stamm and Liu's anti-forensics method disable the detection capabilities of various forensics methods proposed in the literature, used for identifying the compressed images. However, it also degrades the quality of the image. First, we analyze the anti-forensics method and then use the decimal histogram of the coefficients to distinguish the never compressed images from the previously compressed; even the compressed image processed anti-forensically. After analyzing the noise distribution in the AF image, we propose a method to remove the Gaussian noise caused by image dithering which in turn enhances the image quality. The paper is organized in the following manner: Section I is the introduction, containing previous literature. Section II briefs Anti-forensic method proposed by Stamm et al. In section III, we have proposed a forensic approach and section IV comprises of improved anti-forensic approach. Section V covers details of experimentation followed by the conclusion.

2017-09-15
Shi, Tianlin, Agostinelli, Forest, Staib, Matthew, Wipf, David, Moscibroda, Thomas.  2016.  Improving Survey Aggregation with Sparsely Represented Signals. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1845–1854.

In this paper, we develop a new aggregation technique to reduce the cost of surveying. Our method aims to jointly estimate a vector of target quantities such as public opinion or voter intent across time and maintain good estimates when using only a fraction of the data. Inspired by the James-Stein estimator, we resolve this challenge by shrinking the estimates to a global mean which is assumed to have a sparse representation in some known basis. This assumption has lead to two different methods for estimating the global mean: orthogonal matching pursuit and deep learning. Both of which significantly reduce the number of samples needed to achieve good estimates of the true means of the data and, in the case of presidential elections, can estimate the outcome of the 2012 United States elections while saving hundreds of thousands of samples and maintaining accuracy.

2017-08-22
Olagunju, Amos O., Samu, Farouk.  2016.  In Search of Effective Honeypot and Honeynet Systems for Real-Time Intrusion Detection and Prevention. Proceedings of the 5th Annual Conference on Research in Information Technology. :41–46.

A honeypot is a deception tool for enticing attackers to make efforts to compromise the electronic information systems of an organization. A honeypot can serve as an advanced security surveillance tool for use in minimizing the risks of attacks on information technology systems and networks. Honeypots are useful for providing valuable insights into potential system security loopholes. The current research investigated the effectiveness of the use of centralized system management technologies called Puppet and Virtual Machines in the implementation automated honeypots for intrusion detection, correction and prevention. A centralized logging system was used to collect information of the source address, country and timestamp of intrusions by attackers. The unique contributions of this research include: a demonstration how open source technologies is used to dynamically add or modify hacking incidences in a high-interaction honeynet system; a presentation of strategies for making honeypots more attractive for hackers to spend more time to provide hacking evidences; and an exhibition of algorithms for system and network intrusion prevention.

2017-05-19
Nahshon, Yoav, Peterfreund, Liat, Vansummeren, Stijn.  2016.  Incorporating Information Extraction in the Relational Database Model. Proceedings of the 19th International Workshop on Web and Databases. :6:1–6:7.

Modern information extraction pipelines are typically constructed by (1) loading textual data from a database into a special-purpose application, (2) applying a myriad of text-analytics functions to the text, which produce a structured relational table, and (3) storing this table in a database. Obviously, this approach can lead to laborious development processes, complex and tangled programs, and inefficient control flows. Towards solving these deficiencies, we embark on an effort to lay the foundations of a new generation of text-centric database management systems. Concretely, we extend the relational model by incorporating into it the theory of document spanners which provides the means and methods for the model to engage the Information Extraction (IE) tasks. This extended model, called Spannerlog, provides a novel declarative method for defining and manipulating textual data, which makes possible the automation of the typical work method described above. In addition to formally defining Spannerlog and illustrating its usefulness for IE tasks, we also report on initial results concerning its expressive power.

2017-05-18
Saurez, Enrique, Hong, Kirak, Lillethun, Dave, Ramachandran, Umakishore, Ottenwälder, Beate.  2016.  Incremental Deployment and Migration of Geo-distributed Situation Awareness Applications in the Fog. Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems. :258–269.

Geo-distributed Situation Awareness applications are large in scale and are characterized by 24/7 data generation from mobile and stationary sensors (such as cameras and GPS devices); latency-sensitivity for converting sensed data to actionable knowledge; and elastic and bursty needs for computational resources. Fog computing [7] envisions providing computational resources close to the edge of the network, consequently reducing the latency for the sense-process-actuate cycle that exists in these applications. We propose Foglets, a programming infrastructure for the geo-distributed computational continuum represented by fog nodes and the cloud. Foglets provides APIs for a spatio-temporal data abstraction for storing and retrieving application generated data on the local nodes, and primitives for communication among the resources in the computational continuum. Foglets manages the application components on the Fog nodes. Algorithms are presented for launching application components and handling the migration of these components between Fog nodes, based on the mobility pattern of the sensors and the dynamic computational needs of the application. Evaluation results are presented for a Fog network consisting of 16 nodes using a simulated vehicular network as the workload. We show that the discovery and deployment protocol can be executed in 0.93 secs, and joining an already deployed application can be as quick as 65 ms. Also, QoS-sensitive proactive migration can be accomplished in 6 ms.

2017-05-30
Amir-Mohammadian, Sepehr, Skalka, Christian.  2016.  In-Depth Enforcement of Dynamic Integrity Taint Analysis. Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. :43–56.

Dynamic taint analysis can be used as a defense against low-integrity data in applications with untrusted user interfaces. An important example is defense against XSS and injection attacks in programs with web interfaces. Data sanitization is commonly used in this context, and can be treated as a precondition for endorsement in a dynamic integrity taint analysis. However, sanitization is often incomplete in practice. We develop a model of dynamic integrity taint analysis for Java that addresses imperfect sanitization with an in-depth approach. To avoid false positives, results of sanitization are endorsed for access control (aka prospective security), but are tracked and logged for auditing and accountability (aka retrospective security). We show how this heterogeneous prospective/retrospective mechanism can be specified as a uniform policy, separate from code. We then use this policy to establish correctness conditions for a program rewriting algorithm that instruments code for the analysis. The rewriting itself is a model of existing, efficient Java taint analysis tools.

2017-05-17
Tymburibá, Mateus, Moreira, Rubens E. A., Quintão Pereira, Fernando Magno.  2016.  Inference of Peak Density of Indirect Branches to Detect ROP Attacks. Proceedings of the 2016 International Symposium on Code Generation and Optimization. :150–159.

A program subject to a Return-Oriented Programming (ROP) attack usually presents an execution trace with a high frequency of indirect branches. From this observation, several researchers have proposed to monitor the density of these instructions to detect ROP attacks. These techniques use universal thresholds: the density of indirect branches that characterizes an attack is the same for every application. This paper shows that universal thresholds are easy to circumvent. As an alternative, we introduce an inter-procedural semi-context-sensitive static code analysis that estimates the maximum density of indirect branches possible for a program. This analysis determines detection thresholds for each application; thus, making it more difficult for attackers to compromise programs via ROP. We have used an implementation of our technique in LLVM to find specific thresholds for the programs in SPEC CPU2006. By comparing these thresholds against actual execution traces of corresponding programs, we demonstrate the accuracy of our approach. Furthermore, our algorithm is practical: it finds an approximate solution to a theoretically undecidable problem, and handles programs with up to 700 thousand assembly instructions in 25 minutes.

2017-09-19
Salloum, Maher, Mayo, Jackson R., Armstrong, Robert C..  2016.  In-Situ Mitigation of Silent Data Corruption in PDE Solvers. Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme Scale. :43–48.

We present algorithmic techniques for parallel PDE solvers that leverage numerical smoothness properties of physics simulation to detect and correct silent data corruption within local computations. We initially model such silent hardware errors (which are of concern for extreme scale) via injected DRAM bit flips. Our mitigation approach generalizes previously developed "robust stencils" and uses modified linear algebra operations that spatially interpolate to replace large outlier values. Prototype implementations for 1D hyperbolic and 3D elliptic solvers, tested on up to 2048 cores, show that this error mitigation enables tolerating orders of magnitude higher bit-flip rates. The runtime overhead of the approach generally decreases with greater solver scale and complexity, becoming no more than a few percent in some cases. A key advantage is that silent data corruption can be handled transparently with data in cache, reducing the cost of false-positive detections compared to rollback approaches.

2017-05-22
Carlsten, Miles, Kalodner, Harry, Weinberg, S. Matthew, Narayanan, Arvind.  2016.  On the Instability of Bitcoin Without the Block Reward. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :154–167.

Bitcoin provides two incentives for miners: block rewards and transaction fees. The former accounts for the vast majority of miner revenues at the beginning of the system, but it is expected to transition to the latter as the block rewards dwindle. There has been an implicit belief that whether miners are paid by block rewards or transaction fees does not affect the security of the block chain. We show that this is not the case. Our key insight is that with only transaction fees, the variance of the block reward is very high due to the exponentially distributed block arrival time, and it becomes attractive to fork a "wealthy" block to "steal" the rewards therein. We show that this results in an equilibrium with undesirable properties for Bitcoin's security and performance, and even non-equilibria in some circumstances. We also revisit selfish mining and show that it can be made profitable for a miner with an arbitrarily low hash power share, and who is arbitrarily poorly connected within the network. Our results are derived from theoretical analysis and confirmed by a new Bitcoin mining simulator that may be of independent interest. We discuss the troubling implications of our results for Bitcoin's future security and draw lessons for the design of new cryptocurrencies.

2017-05-19
Arage, Tilahun Muluneh, Tesema, Tibebe Beshah.  2016.  An Integrated Approach to Information Systems Security Policy Violation: The Case of Ethiopia. Proceedings of the 10th International Conference on Informatics and Systems. :228–232.

In today's world, the security of companies' data is given a very big emphasis than ever. Despite huge investments made by companies to keep their systems safe, there are many information systems security breaches that infiltrate companies' systems and consequently affect their economic capacity, reputation, and customers' confidence. The literature suggests that almost all investments in information systems security have been focused only on technological solutions. However, having this partial view on the complex information systems security problem is found to be insufficient and hence there is an increasing call for researchers to include social factors into the solution space. One of such social factor is culture. Thus, in this research we studied how national culture influence employees' intention to violate or comply their company ISS policy. We construct and test an empirical model by using a survey data obtained from employees who are working in Ethiopia.

2017-07-24
Jindal, Vasu.  2016.  Integrating Mobile and Cloud for PPG Signal Selection to Monitor Heart Rate During Intensive Physical Exercise. Proceedings of the International Conference on Mobile Software Engineering and Systems. :36–37.

Heart rate monitoring has become increasingly popular in the industry through mobile phones and wearable devices. However, current determination of heart rate through mobile applications suffers from high corruption of signals during intensive physical exercise. In this paper, we present a novel technique for accurately determining heart rate during intensive motion by classifying PPG signals obtained from smartphones or wearable devices combined with motion data obtained from accelerometer sensors. Our approach utilizes the Internet of Things (IoT) cloud connectivity of smartphones for selection of PPG signals using deep learning. The technique is validated using the TROIKA dataset and is accurately able to predict heart rate with a 10-fold cross validation error margin of 4.88%.

2018-01-16
Preethi, G., Gopalan, N. P..  2016.  Integrity Verification For Outsourced XML Database In Cloud Storage. Proceedings of the International Conference on Informatics and Analytics. :42:1–42:5.

Database outsourcing has gained significance like the "Application-as-a-Service" model wherein a third party provider has not trusted. The problems related to security and privacy of outsourced XML data are data confidentiality, user privacy/data privacy and finally query assurance. Existing techniques of query assurance involve properties of certain cryptographic primitives in static scenarios. A novel dynamic index structure is called Merkle Hash and B+- Tree. The combination of B+- Tree and Merkle Hash Tree advantages has been proposed in this paper for dynamic outsourced XML databases. The query assurances having the issues are correctness query Completeness and Freshness for the stored XML Database. In addition, the outsourced XML database with integrity verification has been shown to be more efficient and supports updates in cloud paradigms.

2017-09-05
Applebaum, Andy, Miller, Doug, Strom, Blake, Korban, Chris, Wolf, Ross.  2016.  Intelligent, Automated Red Team Emulation. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :363–373.

Red teams play a critical part in assessing the security of a network by actively probing it for weakness and vulnerabilities. Unlike penetration testing - which is typically focused on exploiting vulnerabilities - red teams assess the entire state of a network by emulating real adversaries, including their techniques, tactics, procedures, and goals. Unfortunately, deploying red teams is prohibitive: cost, repeatability, and expertise all make it difficult to consistently employ red team tests. We seek to solve this problem by creating a framework for automated red team emulation, focused on what the red team does post-compromise - i.e., after the perimeter has been breached. Here, our program acts as an automated and intelligent red team, actively moving through the target network to test for weaknesses and train defenders. At its core, our framework uses an automated planner designed to accurately reason about future plans in the face of the vast amount of uncertainty in red teaming scenarios. Our solution is custom-developed, built on a logical encoding of the cyber environment and adversary profiles, using techniques from classical planning, Markov decision processes, and Monte Carlo simulations. In this paper, we report on the development of our framework, focusing on our planning system. We have successfully validated our planner against other techniques via a custom simulation. Our tool itself has successfully been deployed to identify vulnerabilities and is currently used to train defending blue teams.

2017-06-05
Shimada, Isamu, Higaki, Hiroaki.  2016.  Intentional Collisions for Secure Ad-Hoc Networks. Adjunct Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing Networking and Services. :183–188.

In ad-hoc networks, data messages are transmitted from a source wireless node to a destination one along a wireless multihop transmission route consisting of a sequence of intermediate wireless nodes. Each intermediate wireless node forwards data messages to its next-hop wireless node. Here, a wireless signal carrying the data message is broadcasted by using an omni antenna and it is not difficult for a eavesdropper wireless node to overhear the wireless signal to get the data message. Some researches show that it is useful to transmit noise wireless signal which collide to the data message wireless signal in order for interfering the overhearing. However, some special devices such as directional antennas and/or high computation power for complicated signal processing are required. For wireless multihop networks with huge number of wireless nodes, small and cheap wireless nodes are mandatory for construction of the network. This paper proposes the method for interfering the overhearing by the eavesdropper wireless nodes where routing protocol and data message transmission protocol with cooperative noise signal transmissions by 1-hop and 2-hop neighbor wireless nodes of each intermediate wireless node.

2017-04-24
Li, Yibin, Gai, Keke, Ming, Zhong, Zhao, Hui, Qiu, Meikang.  2016.  Intercrossed Access Controls for Secure Financial Services on Multimedia Big Data in Cloud Systems. ACM Trans. Multimedia Comput. Commun. Appl.. 12:67:1–67:18.

The dramatically growing demand of Cyber Physical and Social Computing (CPSC) has enabled a variety of novel channels to reach services in the financial industry. Combining cloud systems with multimedia big data is a novel approach for Financial Service Institutions (FSIs) to diversify service offerings in an efficient manner. However, the security issue is still a great issue in which the service availability often conflicts with the security constraints when the service media channels are varied. This paper focuses on this problem and proposes a novel approach using the Semantic-Based Access Control (SBAC) techniques for acquiring secure financial services on multimedia big data in cloud computing. The proposed approach is entitled IntercroSsed Secure Big Multimedia Model (2SBM), which is designed to secure accesses between various media through the multiple cloud platforms. The main algorithms supporting the proposed model include the Ontology-Based Access Recognition (OBAR) Algorithm and the Semantic Information Matching (SIM) Algorithm. We implement an experimental evaluation to prove the correctness and adoptability of our proposed scheme.

2017-09-05
Hari, Adiseshu, Lakshman, T. V..  2016.  The Internet Blockchain: A Distributed, Tamper-Resistant Transaction Framework for the Internet. Proceedings of the 15th ACM Workshop on Hot Topics in Networks. :204–210.

Existing security mechanisms for managing the Internet infrastructural resources like IP addresses, AS numbers, BGP advertisements and DNS mappings rely on a Public Key Infrastructure (PKI) that can be potentially compromised by state actors and Advanced Persistent Threats (APTs). Ideally the Internet infrastructure needs a distributed and tamper-resistant resource management framework which cannot be subverted by any single entity. A secure, distributed ledger enables such a mechanism and the blockchain is the best known example of distributed ledgers. In this paper, we propose the use of a blockchain based mechanism to secure the Internet BGP and DNS infrastructure. While the blockchain has scaling issues to be overcome, the key advantages of such an approach include the elimination of any PKI-like root of trust, a verifiable and distributed transaction history log, multi-signature based authorizations for enhanced security, easy extensibility and scriptable programmability to secure new types of Internet resources and potential for a built in cryptocurrency. A tamper resistant DNS infrastructure also ensures that it is not possible for the application level PKI to spoof HTTPS traffic.