Biblio
Filters: Keyword is composability [Clear All Filters]
Performance Analysis of FSO Systems over Imperfect Málaga Atmospheric Turbulence Channels with Pointing Errors. 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). :1–5.
.
2020. In this study, we investigate the performance of FSO communication systems under more realistic channel model considering atmospheric turbulence, pointing errors and channel estimation errors together. For this aim, we first derived the composite probability density function (PDF) of imperfect Málaga turbulence channel with pointing errors. Then using this PDF, we obtained bit-error-rate (BER) and ergodic channel capacity (ECC) expressions in closed forms. Additionally, we present the BER and ECC metrics of imperfect Gamma-Gamma and K turbulence channels with pointing errors as special cases of Málaga channel. We further verified our analytic results through Monte-Carlo simulations.
Performance Analysis of IDS Snort and IDS Suricata with Many-Core Processor in Virtual Machines Against Dos/DDoS Attacks. 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP). :157—162.
.
2020. The rapid development of technology makes it possible for a physical machine to be converted into a virtual machine, which can operate multiple operating systems that are running simultaneously and connected to the internet. DoS/DDoS attacks are cyber-attacks that can threaten the telecommunications sector because these attacks cause services to be disrupted and be difficult to access. There are several software tools for monitoring abnormal activities on the network, such as IDS Snort and IDS Suricata. From previous studies, IDS Suricata is superior to IDS Snort version 2 because IDS Suricata already supports multi-threading, while IDS Snort version 2 still only supports single-threading. This paper aims to conduct tests on IDS Snort version 3.0 which already supports multi-threading and IDS Suricata. This research was carried out on a virtual machine with 1 core, 2 core, and 4 core processor settings for CPU, memory, and capture packet attacks on IDS Snort version 3.0 and IDS Suricata. The attack scenario is divided into 2 parts: DoS attack scenario using 1 physical computer, and DDoS attack scenario using 5 physical computers. Based on overall testing, the results are: In general, IDS Snort version 3.0 is better than IDS Suricata. This is based on the results when using a maximum of 4 core processor, in which IDS Snort version 3.0 CPU usage is stable at 55% - 58%, a maximum memory of 3,000 MB, can detect DoS attacks with 27,034,751 packets, and DDoS attacks with 36,919,395 packets. Meanwhile, different results were obtained by IDS Suricata, in which CPU usage is better compared to IDS Snort version 3.0 with only 10% - 40% usage, and a maximum memory of 1,800 MB. However, the capabilities of detecting DoS attacks are smaller with 3,671,305 packets, and DDoS attacks with a total of 7,619,317 packets on a TCP Flood attack test.
Performance Evaluation of RPL protocol in a 6LoWPAN based Smart Home Environment. 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). :1–6.
.
2020. The advancement in technologies like IoT, device-to-device communication lead to concepts like smart home and smart cities, etc. In smart home architecture, different devices such as home appliances, personal computers, surveillance cameras, etc. are connected to the Internet and enable the user to monitor and control irrespective of time and location. IPv6-enabled 6LoWPAN is a low-power, low-range communication protocol designed and developed for the short-range IoT applications. 6LoWPAN is based on IEEE 802.15.4 protocol and IPv6 network protocol for low range wireless applications. Although 6LoWPAN supports different routing protocols, RPL is the widely used routing protocol for low power and lossy networks. In this work, we have taken an IoT enabled smart home environment, in which 6LoWPAN is used as a communication and RPL as a routing protocol. The performance of this proposed network model is analyzed based on the different performance metrics such as latency, PDR, and throughput. The proposed model is simulated using Cooja simulator running over the Contiki OS. Along with the Cooja simulator, the network analyzer tool Wireshark is used to analyze the network behaviors.
PEX: Privacy-Preserved, Multi-Tier Exchange Framework for Cross Platform Virtual Assets Trading. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–4.
.
2020. In traditional virtual asset trading market, several risks, e.g. scams, cheating users, and market reach, have been pushed to users (sellers/buyers). Users need to decide who to trust; otherwise, no business. This fact impedes the growth of virtual asset trading market. In the past few years, several virtual asset marketplaces have embraced blockchain and smart contract technology to alleviate such risks, while trying to address privacy and scalability issues. To attain both speed and non-repudiation property for all transactions, existing blockchain-based exchange systems still cannot fully accomplish. In real-life trading, users use traditional contract to provide non-repudiation to achieve accountability in all committed transactions, so-called thorough non-repudiation. This is essential when dispute happens. To achieve similar thorough non-repudiation as well as privacy and scalability, we propose PEX, Privacy-preserved, multi-tier EXchange framework for cross platform virtual assets trading. PEX creates a smart contract for each virtual asset trading request. The key to address the challenges is to devise two-level distributed ledgers with two different types of quorums where one is for public knowledge in a global ledger and the other is for confidential information in a private ledger. A private quorum is formed to process individual smart contract and record the transactions in a private distributed ledger in order to maintain privacy. Smart contract execution checkpoints will be continuously written in a global ledger to strengthen thorough non-repudiation. PEX smart contract can be executed in parallel to promote scalability. PEX is also equipped with our reputation-based network to track contribution and discourage malicious behavior nodes or users, building healthy virtual asset ecosystem.
Photonic Compressive Sampling of Sparse Broadband RF Signals using a Multimode Fiber. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). :1–3.
.
2020. We propose a photonic compressive sampling scheme based on multimode fiber for radio spectrum sensing, which shows high accuracy and stability, and low complexity and cost. Pulse overlapping is utilized for a fast detection. © 2020 The Author(s).
Physical Layer Security Proposal for Wireless Body Area Networks. 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME). :1–5.
.
2020. Over the last few decades, and thanks to the advancement of embedded systems and wireless technologies, the wireless sensors network (WSN) are increasingly used in many fields. Many researches are being done on the use of WSN in Wireless body Area Network (WBAN) systems to facilitate and improve the quality of care and remote patient monitoring.The broadcast nature of wireless communications makes it difficult to hide transmitted signals from unauthorized users. To this end, Physical layer security is emerging as a promising paradigm to protect wireless communications against eavesdropping attacks. The primary contribution of this paper is achieving a minimum secrecy outage probability by using the jamming technique which can be used by the legitimate communication partner to increase the noise level of the eavesdropper and ensure higher secure communication rate. We also evaluate the effect of additional jammers on the security of the WBAN system.
Physical-Layer Security with Finite Blocklength over Slow Fading Channels. 2020 International Conference on Computing, Networking and Communications (ICNC). :314–319.
.
2020. This paper studies physical-layer security over slow fading channels, considering the impact of finite-blocklength secrecy coding. A comprehensive analysis and optimization framework is established to investigate the secrecy throughput (ST) of a legitimate user pair coexisting with an eavesdropper. Specifically, we devise both adaptive and non-adaptive optimization schemes to maximize the ST, where we derive optimal parameters including the transmission policy, blocklength, and code rates based on the instantaneous and statistical channel state information of the legitimate pair, respectively. Various important insights are provided. In particular, 1) increasing blocklength improves both reliability and secrecy with our transmission policy; 2) ST monotonically increases with blocklength; 3) ST initially increases and then decreases with secrecy rate, and there exists a critical secrecy rate that maximizes the ST. Numerical results are presented to verify theoretical findings.
Pitfalls and Remedies in Modeling and Simulation of Cyber Physical Systems. 2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). :1–5.
.
2020. The ever-growing advances in science and technology have led to a rapid increase in the complexity of most engineered systems. Cyber-physical Systems (CPSs) are the result of this technology advancement that involves new paradigms, architectures and functionalities derived from different engineering domains. Due to the nature of CPSs, which are composed of many heterogeneous components that constantly interact one another and with the environment, it is difficult to study, explain hypothesis and evaluate design alternatives without using Modeling and Simulation (M&S) approaches. M&S is increasingly used in the CPS domain with different objectives; however, its adoption is not easy and straightforward but can lead to pitfalls that need to be recognized and addressed. This paper identifies some important pitfalls deriving from the application of M&S approaches to the CPS study and presents remedies, which are already available in the literature, to prevent and face them.
A Practical Black-Box Attack Against Autonomous Speech Recognition Model. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
.
2020. With the wild applications of machine learning (ML) technology, automatic speech recognition (ASR) has made great progress in recent years. Despite its great potential, there are various evasion attacks of ML-based ASR, which could affect the security of applications built upon ASR. Up to now, most studies focus on white-box attacks in ASR, and there is almost no attention paid to black-box attacks where attackers can only query the target model to get output labels rather than probability vectors in audio domain. In this paper, we propose an evasion attack against ASR in the above-mentioned situation, which is more feasible in realistic scenarios. Specifically, we first train a substitute model by using data augmentation, which ensures that we have enough samples to train with a small number of times to query the target model. Then, based on the substitute model, we apply Differential Evolution (DE) algorithm to craft adversarial examples and implement black-box attack against ASR models from the Speech Commands dataset. Extensive experiments are conducted, and the results illustrate that our approach achieves untargeted attacks with over 70% success rate while still maintaining the authenticity of the original data well.
Practical Query-based Order Revealing Encryption from Symmetric Searchable Encryption. 2020 15th Asia Joint Conference on Information Security (AsiaJCIS). :16–23.
.
2020. In the 2010s, there has been significant interest in developing methods, such as searchable encryption for exact matching and order-preserving/-revealing encryption for range search, to perform search on encrypted data. However, the symmetric searchable encryption method has been steadily used not only in databases but also in full-text search engine because of its quick performance and high security against intruders and system administrators. Contrarily, order-preserving/-revealing encryption is rarely employed in practice: almost all related schemes suffer from inference attacks, and some schemes are secure but impractical because they require exponential storage size or communication complexity. In this study, we define the new security models based on order-revealing encryption (ORE) for performing range search, and explain that previous techniques are not satisfied with our weak security model. We present two generic constructions of ORE using the searchable encryption method. Our constructions offer practical performance such as the storage size of O(nb) and computation complexity of O(n2), where the plaintext space is a set of n-bit binaries and b denotes the block size of the ciphertext generated via searchable encryption. The first construction gives the comparison result to the server, and the security considers a weak security model. The second construction hides the comparison result from the server, and only the secret-key owner can recover it.
Preventing the Insider – Blocking USB Write Capabilities to Prevent IP Theft. 2020 SoutheastCon. 2:1–7.
.
2020. The Edward Snowden data breach of 2013 clearly illustrates the damage that insiders can do to an organization. An insider's knowledge of an organization allows them legitimate access to the systems where valuable information is stored. Because they belong within an organizations security perimeter, an insider is inherently difficult to detect and prevent information leakage. To counter this, proactive measures must be deployed to limit the ability of an insider to steal information. Email monitoring at the edge is can easily be monitored for large file exaltation. However, USB drives are ideally suited for large-scale file extraction in a covert manner. This work discusses a process for disabling write-access to USB drives while allowing read-access. Allowing read-access for USB drives allows an organization to adapt to the changing security posture of the organization. People can still bring USB devices into the organization and read data from them, but exfiltration is more difficult.
Prioritizing Policy Objectives in Polarized Groups using Artificial Swarm Intelligence. 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–9.
.
2020. Groups often struggle to reach decisions, especially when populations are strongly divided by conflicting views. Traditional methods for collective decision-making involve polling individuals and aggregating results. In recent years, a new method called Artificial Swarm Intelligence (ASI) has been developed that enables networked human groups to deliberate in real-time systems, moderated by artificial intelligence algorithms. While traditional voting methods aggregate input provided by isolated participants, Swarm-based methods enable participants to influence each other and converge on solutions together. In this study we compare the output of traditional methods such as Majority vote and Borda count to the Swarm method on a set of divisive policy issues. We find that the rankings generated using ASI and the Borda Count methods are often rated as significantly more satisfactory than those generated by the Majority vote system (p\textbackslashtextless; 0.05). This result held for both the population that generated the rankings (the “in-group”) and the population that did not (the “out-group”): the in-group ranked the Swarm prioritizations as 9.6% more satisfactory than the Majority prioritizations, while the out-group ranked the Swarm prioritizations as 6.5% more satisfactory than the Majority prioritizations. This effect also held even when the out-group was subject to a demographic sampling bias of 10% (i.e. the out-group was composed of 10% more Labour voters than the in-group). The Swarm method was the only method to be perceived as more satisfactory to the “out-group” than the voting group.
Privacy Preservation of Aggregated Data Using Virtual Battery in the Smart Grid. 2020 IEEE 6th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (DependSys). :106–111.
.
2020. Smart Meters (SM) are IoT end devices used to collect user utility consumption with limited processing power on the edge of the smart grid (SG). While SMs have great applications in providing data analysis to the utility provider and consumers, private user information can be inferred from SMs readings. For preserving user privacy, a number of methods were developed that use perturbation by adding noise to alter user load and hide consumer data. Most methods limit the amount of perturbation noise using differential privacy to preserve the benefits of data analysis. However, additive noise perturbation may have an undesirable effect on billing. Additionally, users may desire to select complete privacy without giving consent to having their data analyzed. We present a virtual battery model that uses perturbation with additive noise obtained from a virtual chargeable battery. The level of noise can be set to make user data differentially private preserving statistics or break differential privacy discarding the benefits of data analysis for more privacy. Our model uses fog aggregation with authentication and encryption that employs lightweight cryptographic primitives. We use Diffie-Hellman key exchange for symmetrical encryption of transferred data and a two-way challenge-response method for authentication.
A Privacy-Aware Collaborative DDoS Defence Network. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—5.
.
2020. Distributed denial of service (DDoS) attacks can bring tremendous damage to online services and ISPs. Existing adopted mitigation methods either require the victim to have a sufficient number of resources for traffic filtering or to pay a third party cloud service to filter the traffic. In our previous work we proposed CoFence, a collaborative network that allows member domains to help each other in terms of DDoS traffic handling. In that network, victim servers facing a DDoS attack can redirect excessive connection requests to other helping servers in different domains for filtering. Only filtered traffic will continue to interact with the victim server. However, sending traffic to third party servers brings up the issue of privacy: specifically leaked client source IP addresses. In this work we propose a privacy protection mechanism for defense so that the helping servers will not be able to see the IP address of the client traffic while it has minimum impact to the data filtering function. We implemented the design through a test bed to demonstrated the feasibility of the proposed design.
Privacy-Cost Management in Smart Meters Using Deep Reinforcement Learning. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :929–933.
.
2020. Smart meters (SMs) play a pivotal rule in the smart grid by being able to report the electricity usage of consumers to the utility provider (UP) almost in real-time. However, this could leak sensitive information about the consumers to the UP or a third-party. Recent works have leveraged the availability of energy storage devices, e.g., a rechargeable battery (RB), in order to provide privacy to the consumers with minimal additional energy cost. In this paper, a privacy-cost management unit (PCMU) is proposed based on a model-free deep reinforcement learning algorithm, called deep double Q-learning (DDQL). Empirical results evaluated on actual SMs data are presented to compare DDQL with the state-of-the-art, i.e., classical Q-learning (CQL). Additionally, the performance of the method is investigated for two concrete cases where attackers aim to infer the actual demand load and the occupancy status of dwellings. Finally, an abstract information-theoretic characterization is provided.
Privacy-Preserving HE-Based Clustering for Load Profiling over Encrypted Smart Meter Data. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
.
2020. Load profiling is to cluster power consumption data to generate load patterns showing typical behaviors of consumers, and thus it has enormous potential applications in smart grid. However, short-interval readings would generate massive smart meter data. Although cloud computing provides an excellent choice to analyze such big data, it also brings significant privacy concerns since the cloud is not fully trustworthy. In this paper, based on a modified vector homomorphic encryption (VHE), we propose a privacy-preserving and outsourced k-means clustering scheme (PPOk M) for secure load profiling over encrypted meter data. In particular, we design a similarity-measuring method that effectively and non-interactively performs encrypted distance metrics. Besides, we present an integrity verification technique to detect the sloppy cloud server, which intends to stop iterations early to save computational cost. In addition, extensive experiments and analysis show that PPOk M achieves high accuracy and performance while preserving convergence and privacy.
Privacy-Preserving Multilayer In-Band Network Telemetry and Data Analytics. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :142—147.
.
2020. As a new paradigm for the monitoring and troubleshooting of backbone networks, the multilayer in-band network telemetry (ML-INT) with deep learning (DL) based data analytics (DA) has recently been proven to be effective on realtime visualization and fine-grained monitoring. However, the existing studies on ML-INT&DA systems have overlooked the privacy and security issues, i.e., a malicious party can apply tapping in the data reporting channels between the data and control planes to illegally obtain plaintext ML-INT data in them. In this paper, we discuss a privacy-preserving DL-based ML-INT&DA system for realizing AI-assisted network automation in backbone networks in the form of IP-over-Optical. We first show a lightweight encryption scheme based on integer vector homomorphic encryption (IVHE), which is used to encrypt plaintext ML-INT data. Then, we architect a DL model for anomaly detection, which can directly analyze the ciphertext ML-INT data. Finally, we present the implementation and experimental demonstrations of the proposed system. The privacy-preserving DL-based ML-INT&DA system is realized in a real IP over elastic optical network (IP-over-EON) testbed, and the experimental results verify the feasibility and effectiveness of our proposal.
Privacy-Preserving Peer Discovery for Group Management in p2p Networks. 2020 27th Conference of Open Innovations Association (FRUCT). :150—156.
.
2020. The necessity for peer-to-peer (p2p) communications is obvious; current centralized solutions are capturing and storing too much information from the individual people communicating with each other. Privacy concerns with a centralized solution in possession of all the users data are a difficult matter. HELIOS platform introduces a new social-media platform that is not in control of any central operator, but brings the power of possession of the data back to the users. It does not have centralized servers that store and handle receiving/sending of the messages. Instead, it relies on the current open-source solutions available in the p2p communities to propagate the messages to the wanted recipients of the data and/or messages. The p2p communications also introduce new problems in terms of privacy and tracking of the user, as the nodes part of a p2p network can see what data the other nodes provide and ask for. How the sharing of data in a p2p network can be achieved securely, taking into account the user's privacy is a question that has not been fully answered so far. We do not claim we answer this question fully in this paper either, but we propose a set of protocols to help answer one specific problem. Especially, this paper proposes how to privately share data (end-point address or other) of the user between other users, provided that they have previously connected with each other securely, either offline or online.
Private FL-GAN: Differential Privacy Synthetic Data Generation Based on Federated Learning. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2927–2931.
.
2020. Generative Adversarial Network (GAN) has already made a big splash in the field of generating realistic "fake" data. However, when data is distributed and data-holders are reluctant to share data for privacy reasons, GAN's training is difficult. To address this issue, we propose private FL-GAN, a differential privacy generative adversarial network model based on federated learning. By strategically combining the Lipschitz limit with the differential privacy sensitivity, the model can generate high-quality synthetic data without sacrificing the privacy of the training data. We theoretically prove that private FL-GAN can provide strict privacy guarantee with differential privacy, and experimentally demonstrate our model can generate satisfactory data.
Process Provenance-based Trust Management in Collaborative Fog Environment. 2020 IEEE Conference on Computer Applications(ICCA). :1–5.
.
2020. With the increasing popularity and adoption of IoT technology, fog computing has been used as an advancement to cloud computing. Although trust management issues in cloud have been addressed, there are still very few studies in a fog area. Trust is needed for collaborating among fog nodes and trust can further improve the reliability by assisting in selecting the fog nodes to collaborate. To address this issue, we present a provenance based trust mechanism that traces the behavior of the process among fog nodes. Our approach adopts the completion rate and failure rate as the process provenance in trust scores of computing workload, especially obvious measures of trustworthiness. Simulation results demonstrate that the proposed system can effectively be used for collaboration in a fog environment.
A Proof of Concept Denial of Service Attack Against Bluetooth IoT Devices. 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :1—6.
.
2020. Bluetooth technologies have widespread applications in personal area networks, device-to-device communications and forming ad hoc networks. Studying Bluetooth devices security is a challenging task as they lack support for monitor mode available with other wireless networks (e.g. 802.11 WiFi). In addition, the frequency-hoping spread spectrum technique used in its operation necessitates special hardware and software to study its operation. This investigation examines methods for analyzing Bluetooth devices' security and presents a proof-of-concept DoS attack on the Link Manager Protocol (LMP) layer using the InternalBlue framework. Through this study, we demonstrate a method to study Bluetooth device security using existing tools without requiring specialized hardware. Consequently, the methods proposed in the paper can be used to study Bluetooth security in many applications.
Properness and Consistency of Syntactico-Semantic Reasoning using PCFG and MEBN. 2020 International Conference on Communication and Signal Processing (ICCSP). :0554–0557.
.
2020. The paper proposes a formal approach for parsing grammatical derivations in the context of the principle of semantic compositionality by defining a mapping between Probabilistic Context Free Grammar (PCFG) and Multi Entity Bayesian Network (MEBN) theory, which is a first-order logic for modelling probabilistic knowledge bases. The principle of semantic compositionality states that meaning of compound expressions is dependent on meanings of constituent expressions forming the compound expression. Typical pattern analysis applications focus on syntactic patterns ignoring semantic patterns governing the domain in which pattern analysis is attempted. The paper introduces the concepts and terminologies of the mapping between PCFG and MEBN theory. Further the paper outlines a modified version of CYK parser algorithm for parsing PCFG derivations driven by MEBN. Using Kullback- Leibler divergence an outline for proving properness and consistency of the PCFG mapped with MEBN is discussed.
Providing Confidentiality in Optical Networks: Metaheuristic Techniques for the Joint Network Coding-Routing and Spectrum Allocation Problem. 2020 22nd International Conference on Transparent Optical Networks (ICTON). :1—4.
.
2020. In this work, novel metaheuristic algorithms are proposed to address the network coding (NC)-based routing and spectrum allocation (RSA) problem in elastic optical networks, aiming to increase the level of security against eavesdropping attacks for the network's confidential connections. A modified simulated annealing, a genetic algorithm, as well as a combination of the two techniques are examined in terms of confidentiality and spectrum utilization. Performance results demonstrate that using metaheuristic techniques can improve the performance of NC-based RSA algorithms and thus can be utilized in real-world network scenarios.
Pythia: Intellectual Property Verification in Zero-Knowledge. 2020 57th ACM/IEEE Design Automation Conference (DAC). :1–6.
.
2020. The contemporary IC supply chain depends heavily on third-party intellectual property (3PIP) that is integrated to in-house designs. As the correctness of such 3PIPs should be verified before integration, one important challenge for 3PIP vendors is proving the functionality of their designs while protecting the privacy of circuit implementations. In this work, we present Pythia that employs zero-knowledge proofs to enable vendors convince integrators about the functionality of a circuit without disclosing its netlist. Pythia automatically encodes netlists into zero knowledge-friendly format, evaluates them on different inputs, and proves correctness of outputs. We evaluate Pythia using the ISCAS'85 benchmark suite.
Quantum Key Distribution in Partially-Trusted QKD Ring Networks. 2020 IEEE 3rd International Conference on Information Systems and Computer Aided Education (ICISCAE). :33–36.
.
2020. The long-distance transmission of quantum secret key is a challenge for quantum communication. As far as the current relay technology is concerned, the trusted relay technology is a more practical scheme. However, the trusted relay technology requires every relay node to be trusted, but in practical applications, the security of some relay nodes cannot be guaranteed. How to overcome the security problem of trusted relay technology and realize the security key distribution of remote quantum network has become a new problem. Therefore, in this paper, a method of quantum key distribution in ring network is proposed under the condition of the coexistence of trusted and untrusted repeaters, and proposes a partially-trusted based routing algorithm (PT-RA). This scheme effectively solves the security problem of key distribution in ring backbone network. And simulation results show that PT-RA can significantly improve key distribution success rate compared with the original trusted relay technology.