Biblio

Found 1589 results

Filters: Keyword is cryptography  [Clear All Filters]
2021-02-03
Kaneriya, J., Patel, H..  2020.  A Comparative Survey on Blockchain Based Self Sovereign Identity System. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1150—1155.

The Internet has changed business, education, healthcare, banking etc. and it is the main part of technological evolution. Internet provides us a connecting world to perform our day to day life activities easily. Internet is designed in such a way that it can uniquely identify machine, not a person, on the network hence there is need to design a system that can perform entity identification on the Internet. Currently on Internet, service providers provide identity of a user with user name and password and store this information on a centralized server. These servers become honey pot for hackers to steal user’s personal identity information and service provider can utilize user identity information using data mining, artificial intelligence for economic benefits. Aim of Self sovereign identity system is to provide decentralized, user centric identity system which is controlled by identity owner that can be developed along with distributed ledger technology i.e. blockchain. In this paper, we intend to make an exhaustive study on different blockchain based self sovereign identity implementations (such as Sovrin, Uport, EverID, LifeID, Sora, SelfKey) along with its architectural components and discuss about use case of self sovereign identity.

2021-05-25
Satılmış, Hami, Akleylek, Sedat.  2020.  Efficient Implementation of HashSieve Algorithm for Lattice-Based Cryptography. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :75—79.
The security of lattice-based cryptosystems that are secure for the post-quantum period is based on the difficulty of the shortest vector problem (SVP) and the closest vector problem (CVP). In the literature, many sieving algorithms are proposed to solve these hard problems. In this paper, efficient implementation of HashSieve sieving algorithm is discussed. A modular software library to have an efficient implementation of HashSieve algorithm is developed. Modular software library is used as an infrastructure in order for the HashSieve efficient implementation to be better than the sample in the literature (Laarhoven's standard HashSieve implementation). According to the experimental results, it is observed that HashSieve efficient implementation has a better running time than the example in the literature. It is concluded that both implementations are close to each other in terms of the memory space used.
2021-08-18
Sravya, G., Kumar, Manchalla. O.V.P., Sudarsana Reddy, Y., Jamal, K., Mannem, Kiran.  2020.  The Ideal Block Ciphers - Correlation of AES and PRESENT in Cryptography. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS). :1107—1113.
In this digital era, the usage of technology has increased rapidly and led to the deployment of more innovative technologies for storing and transferring the generated data. The most important aspect of the emerging communication technologies is to ensure the safety and security of the generated huge amount of data. Hence, cryptography is considered as a pathway that can securely transfer and save the data. Cryptography comprises of ciphers that act like an algorithm, where the data is encrypted at the source and decrypted at the destination. This paper comprises of two ciphers namely PRESENT and AES ciphers. In the real-time applications, AES is no more relevant especially for segmenting the organizations that leverage RFID, Sensors and IoT devices. In order to overcome the strategic issues faced by these organization, PRESENT ciphers work appropriately with its super lightweight block figure, which has the equivalent significance to both security and equipment arrangements. This paper compares the AES (Advance encryption standard) symmetric block cipher with PRESENT symmetric block cipher to leverage in the industries mentioned earlier, where the huge consumption of resources becomes a significant factor. For the comparison of different ciphers, the results of area, timing analysis and the waveforms are taken into consideration.
2021-07-08
Dovgalyuk, Pavel, Vasiliev, Ivan, Fursova, Natalia, Dmitriev, Denis, Abakumov, Mikhail, Makarov, Vladimir.  2020.  Non-intrusive Virtual Machine Analysis and Reverse Debugging with SWAT. 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS). :196—203.
This paper presents SWAT - System-Wide Analysis Toolkit. It is based on open source emulation and debugging projects and implements the approaches for non-intrusive system-wide analysis and debugging: lightweight OS-agnostic virtual machine introspection, full system execution replay, non-intrusive debugging with WinDbg, and full system reverse debugging. These features are based on novel non-intrusive introspection and reverse debugging methods. They are useful for stealth debugging and analysis of the platforms with custom kernels. SWAT includes multi-platform emulator QEMU with additional instrumentation and debugging features, GUI for convenient QEMU setup and execution, QEMU plugin for non-intrusive introspection, and modified version of GDB. Our toolkit may be useful for the developers of the virtual platforms, emulators, and firmwares/drivers/operating systems. Virtual machine intospection approach does not require loading any guest agents and source code of the OS. Therefore it may be applied to ROM-based guest systems and enables using of record/replay of the system execution. This paper includes the description of SWAT components, analysis methods, and some SWAT use cases.
Chaturvedi, Amit Kumar, Kumar, Punit, Sharma, Kalpana.  2020.  Proposing Innovative Intruder Detection System for Host Machines in Cloud Computing. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART). :292—296.
There is very significant role of Virtualization in cloud computing. The physical hardware in the cloud computing reside with the host machine and the virtualization software runs on it. The virtualization allows virtual machines to exist. The host machine shares its physical components such as memory, storage, and processor ultimately to handle the needs of the virtual machines. If an attacker effectively compromises one VM, it could outbreak others on the same host on the network over long periods of time. This is an gradually more popular method for cross-virtual-machine attacks, since traffic between VMs cannot be examined by standard IDS/IPS software programs. As we know that the cloud environment is distributed in nature and hence more susceptible to various types of intrusion attacks which include installing malicious software and generating backdoors. In a cloud environment, where organizations have hosted important and critical data, the security of underlying technologies becomes critical. To alleviate the hazard to cloud environments, Intrusion Detection Systems (IDS) are a cover of defense. In this paper, we are proposing an innovative model for Intrusion Detection System for securing Host machines in cloud infrastructure. This proposed IDS has two important features: (1) signature based and (2) prompt alert system.
2021-05-25
ÇELİK, Mahmut, ALKAN, Mustafa, ALKAN, Abdulkerim Oğuzhan.  2020.  Protection of Personal Data Transmitted via Web Service Against Software Developers. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :88—92.
Through the widespread use of information technologies, institutions have started to offer most of their services electronically. The best example of this is e-government. Since institutions provide their services to the electronic environment, the quality of the services they provide increases and their access to services becomes easier. Since personal information can be verified with inter-agency information sharing systems, wrong or unfair transactions can be prevented. Since information sharing between institutions is generally done through web services, protection of personal data transmitted via web services is of great importance. There are comprehensive national and international regulations on the protection of personal data. According to these regulations, protection of personal data shared between institutions is a legal obligation; protection of personal data is an issue that needs to be handled comprehensively. This study, protection of personal data shared between institutions through web services against software developers is discussed. With a proposed application, it is aimed to take a new security measure for the protection of personal data. The proposed application consists of a web interface prepared using React and Java programming languages and rest services that provide anonymization of personal data.
2021-04-27
Zerrouki, F., Ouchani, S., Bouarfa, H..  2020.  Quantifying Security and Performance of Physical Unclonable Functions. 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :1—4.

Physical Unclonable Function is an innovative hardware security primitives that exploit the physical characteristics of a physical object to generate a unique identifier, which play the role of the object's fingerprint. Silicon PUF, a popular type of PUFs, exploits the variation in the manufacturing process of integrated circuits (ICs). It needs an input called challenge to generate the response as an output. In addition, of classical attacks, PUFs are vulnerable to physical and modeling attacks. The performance of the PUFs is measured by several metrics like reliability, uniqueness and uniformity. So as an evidence, the main goal is to provide a complete tool that checks the strength and quantifies the performance of a given physical unconscionable function. This paper provides a tool and develops a set of metrics that can achieve safely the proposed goal.

2021-07-08
Long, Saiqin, Li, Zhetao, Xing, Yun, Tian, Shujuan, Li, Dongsheng, Yu, Rong.  2020.  A Reinforcement Learning-Based Virtual Machine Placement Strategy in Cloud Data Centers. :223—230.
{With the widespread use of cloud computing, energy consumption of cloud data centers is increasing which mainly comes from IT equipment and cooling equipment. This paper argues that once the number of virtual machines on the physical machines reaches a certain level, resource competition occurs, resulting in a performance loss of the virtual machines. Unlike most papers, we do not impose placement constraints on virtual machines by giving a CPU cap to achieve the purpose of energy savings in cloud data centers. Instead, we use the measure of performance loss to weigh. We propose a reinforcement learning-based virtual machine placement strategy(RLVMP) for energy savings in cloud data centers. The strategy considers the weight of virtual machine performance loss and energy consumption, which is finally solved with the greedy strategy. Simulation experiments show that our strategy has a certain improvement in energy savings compared with the other algorithms.
2021-08-31
Amjath, M.I.M., Senthooran, V..  2020.  Secure Communication Using Steganography in IoT Environment. 2020 2nd International Conference on Advancements in Computing (ICAC). 1:114—119.
IoT is an emerging technology in modern world of communication. As the usage of IoT devices is increasing in day to day life, the secure data communication in IoT environment is the major challenge. Especially, small sized Single-Board Computers (SBCs) or Microcontrollers devices are widely used to transfer data with another in IoT. Due to the less processing power and storage capabilities, the data acquired from these devices must be transferred very securely in order to avoid some ethical issues. There are many cryptography approaches are applied to transfer data between IoT devices, but there are obvious chances to suspect encrypted messages by eavesdroppers. To add more secure data transfer, steganography mechanism is used to avoid the chances of suspicion as another layer of security. Based on the capabilities of IoT devices, low complexity images are used to hide the data with different hiding algorithms. In this research study, the secret data is encoded through QR code and embedded in low complexity cover images by applying image to image hiding fashion. The encoded image is sent to the receiving device via the network. The receiving device extracts the QR code from image using secret key then decoded the original data. The performance measure of the system is evaluated by the image quality parameters mainly Peak Signal to Noise Ratio (PSNR), Normalized Coefficient (NC) and Security with maintaining the quality of contemporary IoT system. Thus, the proposed method hides the precious information within an image using the properties of QR code and sending it without any suspicion to attacker and competes with the existing methods in terms of providing more secure communication between Microcontroller devices in IoT environment.
2021-05-25
AKCENGİZ, Ziya, Aslan, Melis, Karabayır, Özgür, Doğanaksoy, Ali, Uğuz, Muhiddin, Sulak, Fatih.  2020.  Statistical Randomness Tests of Long Sequences by Dynamic Partitioning. 2020 International Conference on Information Security and Cryptology (ISCTURKEY). :68—74.
Random numbers have a wide usage in the area of cryptography. In practice, pseudo random number generators are used in place of true random number generators, as regeneration of them may be required. Therefore because of generation methods of pseudo random number sequences, statistical randomness tests have a vital importance. In this paper, a randomness test suite is specified for long binary sequences. In literature, there are many randomness tests and test suites. However, in most of them, to apply randomness test, long sequences are partitioned into a certain fixed length and the collection of short sequences obtained is evaluated instead. In this paper, instead of partitioning a long sequence into fixed length subsequences, a concept of dynamic partitioning is introduced in accordance with the random variable in consideration. Then statistical methods are applied. The suggested suite, containing four statistical tests: Collision Tests, Weight Test, Linear Complexity Test and Index Coincidence Test, all of them work with the idea of dynamic partitioning. Besides the adaptation of this approach to randomness tests, the index coincidence test is another contribution of this work. The distribution function and the application of all tests are given in the paper.
2021-06-30
Lahiri, Pralay Kumar, Das, Debashis, Mansoor, Wathiq, Banerjee, Sourav, Chatterjee, Pushpita.  2020.  A Trustworthy Blockchain based framework for Impregnable IoV in Edge Computing. 2020 IEEE 17th International Conference on Mobile Ad Hoc and Sensor Systems (MASS). :26—31.
The concept behind the Internet of Things (IoT) is taking everything and connecting to the internet so that all devices would be able to send and receive data online. Internet of Vehicles (IoV) is a key component of smart city which is an outcome of IoT. Nowadays the concept of IoT has plaid an important role in our daily life in different sectors like healthcare, agriculture, smart home, wearable, green computing, smart city applications, etc. The emerging IoV is facing a lack of rigor in data processing, limitation of anonymity, privacy, scalability, security challenges. Due to vulnerability IoV devices must face malicious hackers. Nowadays with the help of blockchain (BC) technology energy system become more intelligent, eco-friendly, transparent, energy efficient. This paper highlights two major challenges i.e. scalability and security issues. The flavor of edge computing (EC) considered here to deal with the scalability issue. A BC is a public, shared database that records transactions between two parties that confirms owners through cryptography. After a transaction is validated and cryptographically verified generates “block” on the BC and transactions are ordered chronologically and cannot be altered. Implementing BC and smart contracts technologies will bring security features for IoV. It plays a role to implement the rules and policies to govern the IoV information and transactions and keep them into the BC to secure the data and for future uses.
2021-01-18
Zhu, L., Chen, C., Su, Z., Chen, W., Li, T., Yu, Z..  2020.  BBS: Micro-Architecture Benchmarking Blockchain Systems through Machine Learning and Fuzzy Set. 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA). :411–423.
Due to the decentralization, irreversibility, and traceability, blockchain has attracted significant attention and has been deployed in many critical industries such as banking and logistics. However, the micro-architecture characteristics of blockchain programs still remain unclear. What's worse, the large number of micro-architecture events make understanding the characteristics extremely difficult. We even lack a systematic approach to identify the important events to focus on. In this paper, we propose a novel benchmarking methodology dubbed BBS to characterize blockchain programs at micro-architecture level. The key is to leverage fuzzy set theory to identify important micro-architecture events after the significance of them is quantified by a machine learning based approach. The important events for single programs are employed to characterize the programs while the common important events for multiple programs form an importance vector which is used to measure the similarity between benchmarks. We leverage BBS to characterize seven and six benchmarks from Blockbench and Caliper, respectively. The results show that BBS can reveal interesting findings. Moreover, by leveraging the importance characterization results, we improve that the transaction throughput of Smallbank from Fabric by 70% while reduce the transaction latency by 55%. In addition, we find that three of seven and two of six benchmarks from Blockbench and Caliper are redundant, respectively.
2021-02-08
Karmakar, J., Mandal, M. K..  2020.  Chaos-based Image Encryption using Integer Wavelet Transform. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :756–760.
Since the last few decades, several chaotic encryption techniques are reported by different researchers. Although the cryptanalysis of some techniques shows the feebler resistance of those algorithms against any weaker attackers. However, different hyper-chaotic based and DNA-coding based encrypting methods are introduced recently. Though, these methods are efficient against several attacks, but, increase complexity as well. On account of these drawbacks, we have proposed a novel technique of chaotic encryption of an image using the integer wavelet transform (IWT) and global bit scrambling (GBS). Here, the image is transformed and decomposed by IWT. Thereafter, a chaotic map is used in the encryption algorithm. A key-dependent bit scrambling (GBS) is introduced rather than pixel scrambling to make the encryption stronger. It enhances key dependency along with the increased resistance against intruder attacks. To check the fragility and dependability of the algorithm, a sufficient number of tests are done, which have given reassuring results. Some tests are done to check the similarity between the original and decrypted image to ensure the excellent outcome of the decryption algorithm. The outcomes of the proposed algorithm are compared with some recent works' outputs to demonstrate its eligibility.
2021-01-18
Muhammad, Z. M. Ziad, Ozkaynak, F..  2020.  A Cryptographic Confusion Primitive Based on Lotka–Volterra Chaotic System and Its Practical Applications in Image Encryption. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :694–698.
New attacks on existing algorithms have revealed various weaknesses. To overcome these weaknesses, researchers are searching for new ones. In this study, a new image encryption algorithm has been proposed to realize this aim. The most obvious component of the proposed image encryption algorithm is the cryptographic substitution box structure used to provide the confusion requirement. The original aspect of the substitution box structure according to similar studies in the literature is that the design was realized by using Lotka-Volterra chaotic system. The analysis results showed that both the substitution box structure and the image encryption algorithm provide the necessary criteria for data security.
2021-02-15
Bisht, K., Deshmukh, M..  2020.  Encryption algorithm based on knight’s tour and n-neighbourhood addition. 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). :31–36.
This paper presents a new algorithm for image encryption by extending the Knight's Tour Problem (KTP). The idea behind the proposed algorithm is to generate a Knight Tour (KT) matrix (m,n) and then divide the image according to the size of knight tour matrix into several sub matrices. Finally, apply n-neighborhood addition modulo encryption algorithm according to the solution of KT matrix over each m × n partition of the image. The proposed algorithm provides image encryption without using the cover images. Results obtained from experiments have shown that the proposed algorithm is efficient, simple and does not disclose any information from encrypted image.
2021-01-18
Kushnir, M., Kosovan, H., Kroialo, P., Komarnytskyy, A..  2020.  Encryption of the Images on the Basis of Two Chaotic Systems with the Use of Fuzzy Logic. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :610–613.

Recently, new perspective areas of chaotic encryption have evolved, including fuzzy logic encryption. The presented work proposes an image encryption system based on two chaotic mapping that uses fuzzy logic. The paper also presents numerical calculations of some parameters of statistical analysis, such as, histogram, entropy of information and correlation coefficient, which confirm the efficiency of the proposed algorithm.

2021-01-20
Hazhirpasand, M., Ghafari, M., Nierstrasz, O..  2020.  CryptoExplorer: An Interactive Web Platform Supporting Secure Use of Cryptography APIs. 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). :632—636.

Research has shown that cryptographic APIs are hard to use. Consequently, developers resort to using code examples available in online information sources that are often not secure. We have developed a web platform, named CryptoExplorer, stocked with numerous real-world secure and insecure examples that developers can explore to learn how to use cryptographic APIs properly. This platform currently provides 3 263 secure uses, and 5 897 insecure uses of Java Cryptography Architecture mined from 2 324 Java projects on GitHub. A preliminary study shows that CryptoExplorer provides developers with secure crypto API use examples instantly, developers can save time compared to searching on the internet for such examples, and they learn to avoid using certain algorithms in APIs by studying misused API examples. We have a pipeline to regularly mine more projects, and, on request, we offer our dataset to researchers.

2021-01-15
Park, W..  2020.  A Study on Analytical Visualization of Deep Web. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :81—83.

Nowadays, there is a flood of data such as naked body photos and child pornography, which is making people bloodless. In addition, people also distribute drugs through unknown dark channels. In particular, most transactions are being made through the Deep Web, the dark path. “Deep Web refers to an encrypted network that is not detected on search engine like Google etc. Users must use Tor to visit sites on the dark web” [4]. In other words, the Dark Web uses Tor's encryption client. Therefore, users can visit multiple sites on the dark Web, but not know the initiator of the site. In this paper, we propose the key idea based on the current status of such crimes and a crime information visual system for Deep Web has been developed. The status of deep web is analyzed and data is visualized using Java. It is expected that the program will help more efficient management and monitoring of crime in unknown web such as deep web, torrent etc.

2021-01-28
Kumar, B. S., Daniya, T., Sathya, N., Cristin, R..  2020.  Investigation on Privacy Preserving using K-Anonymity Techniques. 2020 International Conference on Computer Communication and Informatics (ICCCI). :1—7.

In the current world, day by day the data growth and the investigation about that information increased due to the pervasiveness of computing devices, but people are reluctant to share their information on online portals or surveys fearing safety because sensitive information such as credit card information, medical conditions and other personal information in the wrong hands can mean danger to the society. These days privacy preserving has become a setback for storing data in data repository so for that reason data in the repository should be made undistinguishable, data is encrypted while storing and later decrypted when needed for analysis purpose in data mining. While storing the raw data of the individuals it is important to remove person-identifiable information such as name, employee id. However, the other attributes pertaining to the person should be encrypted so the methodologies used to implement. These methodologies can make data in the repository secure and PPDM task can made easier.

2021-03-15
Lescisin, M., Mahmoud, Q. H..  2020.  A Monitoring Framework for Side-Channel Information Leaks. 2020 IEEE International Conference on Consumer Electronics (ICCE). :1—6.

Security and privacy in computer systems has always been an important aspect of computer engineering and will continue to grow in importance as computer systems become entrusted to handle an ever increasing amount of sensitive information. Classical exploitation techniques such as memory corruption or shell command injection have been well researched and thus there exists known design patterns to avoid and penetration testing tools for testing the robustness of programs against these types of attacks. When it comes to the notion of program security requirements being violated through indirect means referred to as side-channels, testing frameworks of quality comparable to popular memory safety or command injection tools are not available. Recent computer security research has shown that private information may be indirectly leaked through side-channels such as patterns of encrypted network traffic, CPU and motherboard noise, and monitor ambient light. This paper presents the design and evaluation of a side-channel detection and exploitation framework that follows a machine learning based plugin oriented architecture thus allowing side-channel research to be conducted on a wide-variety of side-channel sources.

2021-08-12
Jung, Junyoung, Cho, Jinsung, Lee, Ben.  2020.  A Secure Platform for IoT Devices based on ARM Platform Security Architecture. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—4.
Recent IoT services are being used in various fields such as smart homes, smart factories, smart cars and industrial systems. These various IoT services are implemented through hyper-connected IoT devices, and accordingly, security requirements of these devices are being highlighted. In order to satisfy the security requirements of IoT devices, various studies have been conducted such as HSM, Security SoC, and TrustZone. In particular, ARM proposed Platform Security Architecture (PSA), which is a security architecture that provide execution isolation to safely manage and protect the computing resources of low- end IoT devices. PSA can ensure confidentiality and integrity of IoT devices based on its structural features, but conversely, it has the problem of increasing development difficulty in using the security functions of PSA. To solve this problem, this paper analyzes the security requirements of an IoT platform and proposes secure platform based on PSA. To evaluate the proposed secure platform, a PoC implementation is provided based on hardware prototype consisting of FPGA. Our experiments with the PoC implementation verify that the proposed secure platform offers not only high security but also convenience of application development for IoT devices.
2020-12-28
Zhang, Y., Weng, J., Ling, Z., Pearson, B., Fu, X..  2020.  BLESS: A BLE Application Security Scanning Framework. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :636—645.
Bluetooth Low Energy (BLE) is a widely adopted wireless communication technology in the Internet of Things (IoT). BLE offers secure communication through a set of pairing strategies. However, these pairing strategies are obsolete in the context of IoT. The security of BLE based devices relies on physical security, but a BLE enabled IoT device may be deployed in a public environment without physical security. Attackers who can physically access a BLE-based device will be able to pair with it and may control it thereafter. Therefore, manufacturers may implement extra authentication mechanisms at the application layer to address this issue. In this paper, we design and implement a BLE Security Scan (BLESS) framework to identify those BLE apps that do not implement encryption or authentication at the application layer. Taint analysis is used to track if BLE apps use nonces and cryptographic keys, which are critical to cryptographic protocols. We scan 1073 BLE apps and find that 93% of them are not secure. To mitigate this problem, we propose and implement an application-level defense with a low-cost \$0.55 crypto co-processor using public key cryptography.
2021-01-18
Naik, N., Jenkins, P., Savage, N., Yang, L., Naik, K., Song, J..  2020.  Embedding Fuzzy Rules with YARA Rules for Performance Optimisation of Malware Analysis. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–7.
YARA rules utilises string or pattern matching to perform malware analysis and is one of the most effective methods in use today. However, its effectiveness is dependent on the quality and quantity of YARA rules employed in the analysis. This can be managed through the rule optimisation process, although, this may not necessarily guarantee effective utilisation of YARA rules and its generated findings during its execution phase, as the main focus of YARA rules is in determining whether to trigger a rule or not, for a suspect sample after examining its rule condition. YARA rule conditions are Boolean expressions, mostly focused on the binary outcome of the malware analysis, which may limit the optimised use of YARA rules and its findings despite generating significant information during the execution phase. Therefore, this paper proposes embedding fuzzy rules with YARA rules to optimise its performance during the execution phase. Fuzzy rules can manage imprecise and incomplete data and encompass a broad range of conditions, which may not be possible in Boolean logic. This embedding may be more advantageous when the YARA rules become more complex, resulting in multiple complex conditions, which may not be processed efficiently utilising Boolean expressions alone, thus compromising effective decision-making. This proposed embedded approach is applied on a collected malware corpus and is tested against the standard and enhanced YARA rules to demonstrate its success.
2021-02-01
Ogunseyi, T. B., Bo, T..  2020.  Fast Decryption Algorithm for Paillier Homomorphic Cryptosystem. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :803–806.
With the shift in storage paradigm, there is an increasing need for privacy of dataset and also for an encryption scheme that permits computation on encrypted data. Paillier cryptosystem is a good example of such a homomorphic encryption scheme. To improve the efficiency of the Paillier homomorphic encryption scheme in terms of its decryption speed and overall computational cost, we propose an improved decryption process. Specifically, the inclusion of a variable k to reduce the modular multiplicative arithmetic. The variable k is combined with the L function and CRT recombination method, to arrive at a fast and improved decryption process, showing the mathematical correctness of the decryption algorithm. Experimental results validate that our scheme is significantly efficient in its decryption speed.
2021-01-18
Huitzil, I., Fuentemilla, Á, Bobillo, F..  2020.  I Can Get Some Satisfaction: Fuzzy Ontologies for Partial Agreements in Blockchain Smart Contracts. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
This paper proposes a novel extension of blockchain systems with fuzzy ontologies. The main advantage is to let the users have flexible restrictions, represented using fuzzy sets, and to develop smart contracts where there is a partial agreement among the involved parts. We propose a general architecture based on four fuzzy ontologies and a process to develop and run the smart contracts, based on a reduction to a well-known fuzzy ontology reasoning task (Best Satisfiability Degree). We also investigate different operators to compute Pareto-optimal solutions and implement our approach in the Ethereum blockchain.