Biblio

Found 1727 results

Filters: First Letter Of Title is D  [Clear All Filters]
2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2023-08-23
Nikolos, Orestis Lagkas, Goumas, Georgios, Koziris, Nectarios.  2022.  Deverlay: Container Snapshots For Virtual Machines. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :11—20.
The Cloud Native paradigm has quickly emerged as a new trend in Web Services architectures. Applications are now developed as a network of microservices and functions that can be quickly re-deployed anywhere, decoupled from their state. In this scenario, workloads are usually packaged as container images that can be quickly provisioned anywhere in a provider web service. To enforce security, traditional Docker container runtime mechanisms are now being enhanced by stronger isolation techniques such as lightweight hardware level virtualization. Such sandboxing inserts a strong boundary - the guest space - and therefore security containers do not share filesystem semantics with the host Operating System. However, the existing container storage drivers are designed and optimized to run directly on the host. In this paper we bridge the gap between traditional containers and virtualized containers. We present Deverlay, a container storage driver that prepares a block-based container root filesystem view, targeting lightweight Virtual Machines and keeping host native execution compatibility. We show that, in contrast to other block-based drivers, Deverlay can boot 80 micro VM containers in less than 4s by efficiently sharing host cache buffers among containers and reducing I/O disk access by 97.51 %.
2023-02-03
Sicari, Christian, Catalfamo, Alessio, Galletta, Antonino, Villari, Massimo.  2022.  A Distributed Peer to Peer Identity and Access Management for the Osmotic Computing. 2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid). :775–781.
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
2023-06-16
Xiao, Renjie, Yuan, Yong'an, Tan, Zijing, Ma, Shuai, Wang, Wei.  2022.  Dynamic Functional Dependency Discovery with Dynamic Hitting Set Enumeration. 2022 IEEE 38th International Conference on Data Engineering (ICDE). :286—298.
Functional dependencies (FDs) are widely applied in data management tasks. Since FDs on data are usually unknown, FD discovery techniques are studied for automatically finding hidden FDs from data. In this paper, we develop techniques to dynamically discover FDs in response to changes on data. Formally, given the complete set Σ of minimal and valid FDs on a relational instance r, we aim to find the complete set Σ$^\textrm\textbackslashprime$ of minimal and valid FDs on røplus\textbackslashDelta r, where \textbackslashDelta r is a set of tuple insertions and deletions. Different from the batch approaches that compute Σ$^\textrm\textbackslashprime$ on røplus\textbackslashDelta r from scratch, our dynamic method computes Σ$^\textrm\textbackslashprime$ in response to \textbackslashtriangle\textbackslashuparrow. by leveraging the known Σ on r, and avoids processing the whole of r for each update from \textbackslashDelta r. We tackle dynamic FD discovery on røplus\textbackslashDelta r by dynamic hitting set enumeration on the difference-set of røplus\textbackslashDelta r. Specifically, (1) leveraging auxiliary structures built on r, we first present an efficient algorithm to update the difference-set of r to that of røplus\textbackslashDelta r. (2) We then compute Σ$^\textrm\textbackslashprime$, by recasting dynamic FD discovery as dynamic hitting set enumeration on the difference-set of røplus\textbackslashDelta r and developing novel techniques for dynamic hitting set enumeration. (3) We finally experimentally verify the effectiveness and efficiency of our approaches, using real-life and synthetic data. The results show that our dynamic FD discovery method outperforms the batch counterparts on most tested data, even when \textbackslashDelta r is up to 30 % of r.
2023-08-18
Doraswamy, B., Krishna, K. Lokesh.  2022.  A Deep Learning Approach for Anomaly Detection in Industrial Control Systems. 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS). :442—448.
An Industrial Control System (ICS) is essential in monitoring and controlling critical infrastructures such as safety and security. Internet of Things (IoT) in ICSs allows cyber-criminals to utilize systems' vulnerabilities towards deploying cyber-attacks. To distinguish risks and keep an eye on malicious activity in networking systems, An Intrusion Detection System (IDS) is essential. IDS shall be used by system admins to identify unwanted accesses by attackers in various industries. It is now a necessary component of each organization's security governance. The main objective of this intended work is to establish a deep learning-depended intrusion detection system that can quickly identify intrusions and other unwanted behaviors that have the potential to interfere with networking systems. The work in this paper uses One Hot encoder for preprocessing and the Auto encoder for feature extraction. On KDD99 CUP, a data - set for network intruding, we categorize the normal and abnormal data applying a Deep Convolutional Neural Network (DCNN), a deep learning-based methodology. The experimental findings demonstrate that, in comparison with SVM linear Kernel model, SVM RBF Kernel model, the suggested deep learning model operates better.
2023-07-21
Shiqi, Li, Yinghui, Han.  2022.  Detection of Bad Data and False Data Injection Based on Back-Propagation Neural Network. 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia). :101—105.
Power system state estimation is an essential tool for monitoring the operating conditions of the grid. However, the collected measurements may not always be reliable due to bad data from various faults as well as the increasing potential of being exposed to cyber-attacks, particularly from data injection attacks. To enhance the accuracy of state estimation, this paper presents a back-propagation neural network to detect and identify bad data and false data injections. A variety of training data exhibiting different statistical properties were used for training. The developed strategy was tested on the IEEE 30-bus and 118-bus power systems using MATLAB. Simulation results revealed the feasibility of the method for the detection and differentiation of bad data and false data injections in various operating scenarios.
2023-06-29
Rasyid, Ihsan Faishal, Zagi, Luqman Muhammad, Suhardi.  2022.  Digital Forensic Readiness Information System For EJBCA Digital Signature Web Server. 2022 International Conference on Information Technology Systems and Innovation (ICITSI). :177–182.
As the nature of the website, the EJBCA digital signatures may have vulnerabilities. The list of web-based vulnerabilities can be found in OWASP's Top 10 2021. Anticipating the attack with an effective and efficient forensics application is necessary. The concept of digital forensic readiness can be applied as a pre-incident plan with a digital forensic lifecycle pipeline to establish an efficient forensic process. Managing digital evidence in the pre-incident plan includes data collection, examination, analysis, and findings report. Based on this concept, we implemented it in designing an information system that carries out the entire flow, provides attack evidence collection, visualization of attack statistics in executive summary, mitigation recommendation, and forensic report generation in a physical form when needed. This research offers an information system that can help the digital forensic process and maintain the integrity of the EJBCA digital signature server web.
2023-06-22
Awasthi, Divyanshu, Srivastava, Vinay Kumar.  2022.  Dual Image Watermarking using Hessenberg decomposition and RDWT-DCT-SVD in YCbCr color space. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :1–6.
A dual-image watermarking approach is presented in this research. The presented work utilizes the properties of Hessenberg decomposition, Redundant discrete wavelet transform (RDWT), Discrete cosine transform (DCT) and Singular value decomposition (SVD). For watermarking, the YCbCr color space is employed. Two watermark logos are for embedding. A YCbCr format conversion is performed on the RGB input image. The host image's Y and Cb components are divided into various sub-bands using RDWT. The Hessenberg decomposition is applied on high-low and low-high components. After that, SVD is applied to get dominant matrices. Two different logos are used for watermarking. Apply RDWT on both watermark images. After that, apply DCT and SVD to get dominant matrices of logos. Add dominant matrices of input host and watermark images to get the watermarked image. Average PSNR, MSE, Structural similarity index measurement (SSIM) and Normalized correlation coefficient (NCC) are used as the performance parameters. The resilience of the presented work is tested against various attacks such as Gaussian low pass filter, Speckle noise attack, Salt and Pepper, Gaussian noise, Rotation, Median and Average filter, Sharpening, Histogram equalization and JPEG compression. The presented scheme is robust and imperceptible when compared with other schemes.
2023-09-20
Zhang, Zhe, Wang, Yaonan, Zhang, Jing, Xiao, Xu.  2022.  Dynamic analysis for a novel fractional-order malware propagation model system with time delay. 2022 China Automation Congress (CAC). :6561—6566.
The rapid development of network information technology, individual’s information networks security has become a very critical issue in our daily life. Therefore, it is necessary to study the malware propagation model system. In this paper, the traditional integer order malware propagation model system is extended to the field of fractional-order. Then we analyze the asymptotic stability of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is 0. Next, the asymptotic stability and bifurcation analysis of the fractional-order malware propagation model system when the equilibrium point is the origin and the time delay is not 0 are carried out. Moreover, we study the asymptotic stability of the fractional-order malware propagation model system with an interior equilibrium point. In the end, so as to verify our theoretical results, many numerical simulations are provided.
2023-06-02
Dalvi, Ashwini, Patil, Gunjan, Bhirud, S G.  2022.  Dark Web Marketplace Monitoring - The Emerging Business Trend of Cybersecurity. 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT). :1—6.

Cyber threat intelligence (CTI) is vital for enabling effective cybersecurity decisions by providing timely, relevant, and actionable information about emerging threats. Monitoring the dark web to generate CTI is one of the upcoming trends in cybersecurity. As a result, developing CTI capabilities with the dark web investigation is a significant focus for cybersecurity companies like Deepwatch, DarkOwl, SixGill, ThreatConnect, CyLance, ZeroFox, and many others. In addition, the dark web marketplace (DWM) monitoring tools are of much interest to law enforcement agencies (LEAs). The fact that darknet market participants operate anonymously and online transactions are pseudo-anonymous makes it challenging to identify and investigate them. Therefore, keeping up with the DWMs poses significant challenges for LEAs today. Nevertheless, the offerings on the DWM give insights into the dark web economy to LEAs. The present work is one such attempt to describe and analyze dark web market data collected for CTI using a dark web crawler. After processing and labeling, authors have 53 DWMs with their product listings and pricing.

2023-09-01
Küçük, Düzgün, Yakut, Ömer Faruk, Cevız, Barış, Çakar, Emre, Ertam, Fatih.  2022.  Data Manipulation and Digital Forensics Analysis on WhatsApp Application. 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY). :19—24.
WhatsApp is one of the rare applications that has managed to become one of the most popular instant messaging applications all over the world. While inherently designed for simple and fast communication, privacy features such as end-to-end encryption have made confidential communication easy for criminals aiming to commit illegal acts. However, as it meets many daily communication and communication needs, it has a great potential to be digital evidence in interpersonal disputes. In this study, in parallel with the potential of WhatsApp application to contain digital evidence, the abuse of this situation and the manipulation method of multimedia files, which may cause wrong decisions by the judicial authorities, are discussed. The dangerous side of this method, which makes the analysis difficult, is that it can be applied by anyone without the need for high-level root authority or any other application on these devices. In addition, it is difficult to detect as no changes can be made in the database during the analysis phase. In this study, a controlled experimental environment was prepared on the example scenario, the manipulation was carried out and the prepared system analysis was included. The results obtained showed that the evidence at the forensic analysis stage is open to misinterpretation.
2023-07-19
Zhao, Hongwei, Qi, Yang, Li, Weilin.  2022.  Decentralized Power Management for Multi-active Bridge Converter. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1—6.
Multi-active bridge (MAB) converter has played an important role in the power conversion of renewable-based smart grids, electrical vehicles, and more/all electrical aircraft. However, the increase of MAB submodules greatly complicates the control architecture. In this regard, the conventional centralized control strategies, which rely on a single controller to process all the information, will be limited by the computation burden. To overcome this issue, this paper proposes a decentralized power management strategy for MAB converter. The switching frequencies of MAB submodules are adaptively regulated based on the submodule local information. Through this effort, flexible electrical power routing can be realized without communications among submodules. The proposed methodology not only relieves the computation burden of MAB control system, but also improves its modularity, flexibility, and expandability. Finally, the experiment results of a three-module MAB converter are presented for verification.
2023-06-29
Wang, Zhichao.  2022.  Deep Learning Methods for Fake News Detection. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :472–475.

Nowadays, although it is much more convenient to obtain news with social media and various news platforms, the emergence of all kinds of fake news has become a headache and urgent problem that needs to be solved. Currently, the fake news recognition algorithm for fake news mainly uses GCN, including some other niche algorithms such as GRU, CNN, etc. Although all fake news verification algorithms can reach quite a high accuracy with sufficient datasets, there is still room for improvement for unsupervised learning and semi-supervised. This article finds that the accuracy of the GCN method for fake news detection is basically about 85% through comparison with other neural network models, which is satisfactory, and proposes that the current field lacks a unified training dataset, and that in the future fake news detection models should focus more on semi-supervised learning and unsupervised learning.

2023-04-14
Shaocheng, Wu, Hefang, Jiang, Sijian, Li, Tao, Liu.  2022.  Design of a chaotic sequence cipher algorithm. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :320–323.
To protect the security of video information use encryption technology to be effective means. In practical applications, the structural complexity and real-time characteristics of video information make the encryption effect of some commonly used algorithms have some shortcomings. According to the characteristics of video, to design practical encryption algorithm is necessary. This paper proposed a novel scheme of chaotic image encryption, which is based on scrambling and diffusion structure. Firstly, the breadth first search method is used to scramble the pixel position in the original image, and then the pseudo-random sequence generated by the time-varying bilateral chaotic symbol system is used to transform each pixel of the scrambled image ratio by ratio or encryption. In the simulation experiment and analysis, the performance of the encrypted image message entropy displays that the new chaotic image encryption scheme is effective.
2023-06-22
Satyanarayana, D, Alasmi, Aisha Said.  2022.  Detection and Mitigation of DDOS based Attacks using Machine Learning Algorithm. 2022 International Conference on Cyber Resilience (ICCR). :1–5.

In recent decades, a Distributed Denial of Service (DDoS) attack is one of the most expensive attacks for business organizations. The DDoS is a form of cyber-attack that disrupts the operation of computer resources and networks. As technology advances, the styles and tools used in these attacks become more diverse. These attacks are increased in frequency, volume, and intensity, and they can quickly disrupt the victim, resulting in a significant financial loss. In this paper, it is described the significance of DDOS attacks and propose a new method for detecting and mitigating the DDOS attacks by analyzing the traffics coming to the server from the BOTNET in attacking system. The process of analyzing the requests coming from the BOTNET uses the Machine learning algorithm in the decision making. The simulation is carried out and the results analyze the DDOS attack.

2023-07-12
Dwiko Satriyo, U. Y. S, Rahutomo, Faisal, Harjito, Bambang, Prasetyo, Heri.  2022.  DNA Cryptography Based on NTRU Cryptosystem to Improve Security. 2022 IEEE 8th Information Technology International Seminar (ITIS). :27—31.
Information exchange occurs all the time in today’s internet era. Some of the data are public, and some are private. Asymmetric cryptography plays a critical role in securing private data transfer. However, technological advances caused private data at risk due to the presence of quantum computers. Therefore, we need a new method for securing private data. This paper proposes combining DNA cryptography methods based on the NTRU cryptosystem to enhance security data confidentiality. This method is compared with conventional public key cryptography methods. The comparison shows that the proposed method has a slow encryption and decryption time compared to other methods except for RSA. However, the key generation time of the proposed method is much faster than other methods tested except for ECC. The proposed method is superior in key generation time and considerably different from other tested methods. Meanwhile, the encryption and decryption time is slower than other methods besides RSA. The test results can get different results based on the programming language used.
Ogiela, Marek R., Ogiela, Urszula.  2022.  DNA-based Secret Sharing and Hiding in Dispersed Computing. 2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :126—127.
In this paper will be described a new security protocol for secret sharing and hiding, which use selected personal features. Such technique allows to create human-oriented personalized security protocols dedicated for particular users. Proposed method may be applied in dispersed computing systems, where secret data should be divided into particular number of parts.
2023-08-11
Wang, Jing, Wu, Fengheng, Zhang, Tingbo, Wu, Xiaohua.  2022.  DPP: Data Privacy-Preserving for Cloud Computing based on Homomorphic Encryption. 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :29—32.
Cloud computing has been widely used because of its low price, high reliability, and generality of services. However, considering that cloud computing transactions between users and service providers are usually asynchronous, data privacy involving users and service providers may lead to a crisis of trust, which in turn hinders the expansion of cloud computing applications. In this paper, we propose DPP, a data privacy-preserving cloud computing scheme based on homomorphic encryption, which achieves correctness, compatibility, and security. DPP implements data privacy-preserving by introducing homomorphic encryption. To verify the security of DPP, we instantiate DPP based on the Paillier homomorphic encryption scheme and evaluate the performance. The experiment results show that the time-consuming of the key steps in the DPP scheme is reasonable and acceptable.
2023-06-22
Sun, Yanchao, Han, Yuanfeng, Zhang, Yue, Chen, Mingsong, Yu, Shui, Xu, Yimin.  2022.  DDoS Attack Detection Combining Time Series-based Multi-dimensional Sketch and Machine Learning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :01–06.
Machine learning-based DDoS attack detection methods are mostly implemented at the packet level with expensive computational time costs, and the space cost of those sketch-based detection methods is uncertain. This paper proposes a two-stage DDoS attack detection algorithm combining time series-based multi-dimensional sketch and machine learning technologies. Besides packet numbers, total lengths, and protocols, we construct the time series-based multi-dimensional sketch with limited space cost by storing elephant flow information with the Boyer-Moore voting algorithm and hash index. For the first stage of detection, we adopt CNN to generate sketch-level DDoS attack detection results from the time series-based multi-dimensional sketch. For the sketch with potential DDoS attacks, we use RNN with flow information extracted from the sketch to implement flow-level DDoS attack detection in the second stage. Experimental results show that not only is the detection accuracy of our proposed method much close to that of packet-level DDoS attack detection methods based on machine learning, but also the computational time cost of our method is much smaller with regard to the number of machine learning operations.
ISSN: 2576-8565
2023-01-20
Raptis, Theofanis P., Cicconetti, Claudio, Falelakis, Manolis, Kanellos, Tassos, Lobo, Tomás Pariente.  2022.  Design Guidelines for Apache Kafka Driven Data Management and Distribution in Smart Cities. 2022 IEEE International Smart Cities Conference (ISC2). :1–7.
Smart city management is going through a remarkable transition, in terms of quality and diversity of services provided to the end-users. The stakeholders that deliver pervasive applications are now able to address fundamental challenges in the big data value chain, from data acquisition, data analysis and processing, data storage and curation, and data visualisation in real scenarios. Industry 4.0 is pushing this trend forward, demanding for servitization of products and data, also for the smart cities sector where humans, sensors and devices are operating in strict collaboration. The data produced by the ubiquitous devices must be processed quickly to allow the implementation of reactive services such as situational awareness, video surveillance and geo-localization, while always ensuring the safety and privacy of involved citizens. This paper proposes a modular architecture to (i) leverage innovative technologies for data acquisition, management and distribution (such as Apache Kafka and Apache NiFi), (ii) develop a multi-layer engineering solution for revealing valuable and hidden societal knowledge in smart cities environment, and (iii) tackle the main issues in tasks involving complex data flows and provide general guidelines to solve them. We derived some guidelines from an experimental setting performed together with leading industrial technical departments to accomplish an efficient system for monitoring and servitization of smart city assets, with a scalable platform that confirms its usefulness in numerous smart city use cases with different needs.
2022-12-09
Reynvoet, Maxim, Gheibi, Omid, Quin, Federico, Weyns, Danny.  2022.  Detecting and Mitigating Jamming Attacks in IoT Networks Using Self-Adaptation. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :7—12.
Internet of Things (IoT) networks consist of small devices that use a wireless communication to monitor and possibly control the physical world. A common threat to such networks are jamming attacks, a particular type of denial of service attack. Current research highlights the need for the design of more effective and efficient anti-jamming techniques that can handle different types of attacks in IoT networks. In this paper, we propose DeMiJA, short for Detection and Mitigation of Jamming Attacks in IoT, a novel approach to deal with different jamming attacks in IoT networks. DeMiJA leverages architecture-based adaptation and the MAPE-K reference model (Monitor-Analyze-Plan-Execute that share Knowledge). We present the general architecture of DeMiJA and instantiate the architecture to deal with jamming attacks in the DeltaIoT exemplar. The evaluation shows that DeMiJA can handle different types of jamming attacks effectively and efficiently, with neglectable overhead.
2023-01-06
Zhang, Han, Luo, Xiaoxiao, Li, Yongfu, Sima, Wenxia, Yang, Ming.  2022.  A Digital Twin Based Fault Location Method for Transmission Lines Using the Recovery Information of Instrument Transformers. 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). :1—4.
The parameters of transmission line vary with environmental and operating conditions, thus the paper proposes a digital twin-based transmission line model. Based on synchrophasor measurements from phasor measurement units, the proposed model can use the maximum likelihood estimation (MLE) to reduce uncertainty between the digital twin and its physical counterpart. A case study has been conducted in the paper to present the influence of the uncertainty in the measurements on the digital twin for the transmission line and analyze the effectiveness of the MLE method. The results show that the proposed digital twin-based model is effective in reducing the influence of the uncertainty in the measurements and improving the fault location accuracy.
2023-03-17
Mohammadi, Ali, Badewa, Oluwaseun A., Chulaee, Yaser, Ionel, Dan M., Essakiappan, Somasundaram, Manjrekar, Madhav.  2022.  Direct-Drive Wind Generator Concept with Non-Rare-Earth PM Flux Intensifying Stator and Reluctance Outer Rotor. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :582–587.
This paper proposes a novel concept for an electric generator in which both ac windings and permanent magnets (PMs) are placed in the stator. Concentrated windings with a special pattern and phase coils placed in separate slots are employed. The PMs are positioned in a spoke-type field concentrating arrangement, which provides high flux intensification and enables the use of lower remanence and energy non-rare earth magnets. The rotor is exterior to the stator and has a simple and robust reluctance-type configuration without any active electromagnetic excitation components. The principle of operation is introduced based on the concept of virtual work with closed-form analytical airgap flux density distributions. Initial and parametric design studies were performed using electromagnetic FEA for a 3MW direct-drive wind turbine generator employing PMs of different magnetic remanence and specific energy. Results include indices for the goodness of excitation and the goodness of the electric machine designs; loss; and efficiency estimations, indicating that performance comparable to PM synchronous designs employing expensive and critical supply rare-earth PMs may be achieved with non-rare earth PMs using the proposed configuration.
ISSN: 2572-6013
2023-01-05
Swain, Satyananda, Patra, Manas Ranjan.  2022.  A Distributed Agent-Oriented Framework for Blockchain-Enabled Supply Chain Management. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Blockchain has emerged as a leading technological innovation because of its indisputable safety and services in a distributed setup. Applications of blockchain are rising covering varied fields such as financial transactions, supply chains, maintenance of land records, etc. Supply chain management is a potential area that can immensely benefit from blockchain technology (BCT) along with smart contracts, making supply chain operations more reliable, safer, and trustworthy for all its stakeholders. However, there are numerous challenges such as scalability, coordination, and safety-related issues which are yet to be resolved. Multi-agent systems (MAS) offer a completely new dimension for scalability, cooperation, and coordination in distributed culture. MAS consists of a collection of automated agents who can perform a specific task intelligently in a distributed environment. In this work, an attempt has been made to develop a framework for implementing a multi-agent system for a large-scale product manufacturing supply chain with blockchain technology wherein the agents communicate with each other to monitor and organize supply chain operations. This framework eliminates many of the weaknesses of supply chain management systems. The overall goal is to enhance the performance of SCM in terms of transparency, traceability, trustworthiness, and resilience by using MAS and BCT.
2022-04-13
Mishra, Sarthak, Chatterjee, Pinaki Sankar.  2021.  D3: Detection and Prevention of DDoS Attack Using Cuckoo Filter. 2021 19th OITS International Conference on Information Technology (OCIT). :279—284.
DDoS attacks have grown in popularity as a tactic for potential hackers, cyber blackmailers, and cyberpunks. These attacks have the potential to put a person unconscious in a matter of seconds, resulting in severe economic losses. Despite the vast range of conventional mitigation techniques available today, DDoS assaults are still happening to grow in frequency, volume, and intensity. A new network paradigm is necessary to meet the requirements of today's tough security issues. We examine the available detection and mitigation of DDoS attacks techniques in depth. We classify solutions based on detection of DDoS attacks methodologies and define the prerequisites for a feasible solution. We present a novel methodology named D3 for detecting and mitigating DDoS attacks using cuckoo filter.