Biblio
Filters: First Letter Of Title is E [Clear All Filters]
An empirical study of intelligent approaches to DDoS detection in large scale networks. 2019 International Conference on Computing, Networking and Communications (ICNC). :821–827.
.
2019. Distributed Denial of Services (DDoS) attacks continue to be one of the most challenging threats to the Internet. The intensity and frequency of these attacks are increasing at an alarming rate. Numerous schemes have been proposed to mitigate the impact of DDoS attacks. This paper presents a comprehensive empirical evaluation of Machine Learning (ML)based DDoS detection techniques, to gain better understanding of their performance in different types of environments. To this end, a framework is developed, focusing on different attack scenarios, to investigate the performance of a class of ML-based techniques. The evaluation uses different performance metrics, including the impact of the “Class Imbalance Problem” on ML-based DDoS detection. The results of the comparative analysis show that no one technique outperforms all others in all test cases. Furthermore, the results underscore the need for a method oriented feature selection model to enhance the capabilities of ML-based detection techniques. Finally, the results show that the class imbalance problem significantly impacts performance, underscoring the need to address this problem in order to enhance ML-based DDoS detection capabilities.
An Empirical Study on API-Misuse Bugs in Open-Source C Programs. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:11—20.
.
2019. Today, large and complex software is developed with integrated components using application programming interfaces (APIs). Correct usage of APIs in practice presents a challenge due to implicit constraints, such as call conditions or call orders. API misuse, i.e., violation of these constraints, is a well-known source of bugs, some of which can cause serious security vulnerabilities. Although researchers have developed many API-misuse detectors over the last two decades, recent studies show that API misuses are still prevalent. In this paper, we provide a comprehensive empirical study on API-misuse bugs in open-source C programs. To understand the nature of API misuses in practice, we analyze 830 API-misuse bugs from six popular programs across different domains. For all the studied bugs, we summarize their root causes, fix patterns and usage statistics. Furthermore, to understand the capabilities and limitations of state-of-the-art static analysis detectors for API-misuse detection, we develop APIMU4C, a dataset of API-misuse bugs in C code based on our empirical study results, and evaluate three widely-used detectors on it qualitatively and quantitatively. We share all the findings and present possible directions towards more powerful API-misuse detectors.
Enabling Privacy-Preserving Sharing of Cyber Threat Information in the Cloud. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :74–80.
.
2019. Network threats often come from multiple sources and affect a variety of domains. Collaborative sharing and analysis of Cyber Threat Information (CTI) can greatly improve the prediction and prevention of cyber-attacks. However, CTI data containing sensitive and confidential information can cause privacy exposure and disclose security risks, which will deter organisations from sharing their CTI data. To address these concerns, the consortium of the EU H2020 project entitled Collaborative and Confidential Information Sharing and Analysis for Cyber Protection (C3ISP) has designed and implemented a framework (i.e. C3ISP Framework) as a service for cyber threat management. This paper focuses on the design and development of an API Gateway, which provides a bridge between end-users and their data sources, and the C3ISP Framework. It facilitates end-users to retrieve their CTI data, regulate data sharing agreements in order to sanitise the data, share the data with privacy-preserving means, and invoke collaborative analysis for attack prediction and prevention. In this paper, we report on the implementation of the API Gateway and experiments performed. The results of these experiments show the efficiency of our gateway design, and the benefits for the end-users who use it to access the C3ISP Framework.
Enabling Ubiquitous Hardware Security via Energy-Efficient Primitives and Systems : (Invited Paper). 2019 IEEE Custom Integrated Circuits Conference (CICC). :1–8.
.
2019. Security down to hardware (HW) has become a fundamental requirement in highly-connected and ubiquitously deployed systems, as a result of the recent discovery of a wide range of vulnerabilities in commercial devices, as well as the affordability of several attacks that were traditionally considered unlikely. HW security is now a fundamental requirement in view of the massive attack surface that they expose, and the substantial power penalty entailed by solutions at higher levels of abstraction.In large-scale networks of connected devices, attacks need to be counteracted at low cost down to individual nodes, which need to be identified or authenticated securely, and protect confidentiality and integrity of the data that is sensed, stored, processed and wirelessly exchanged. In many security-sensitive applications, physical attacks against individual chips need to be counteracted to truly enable an end-to-end chain of trust from nodes to cloud and actuation (i.e., always-on security). These requirements have motivated the on-going global research and development effort to assure hardware security at low cost and power penalty down to low-end devices (i.e., ubiquitous security).This paper provides a fresh overview of the fundamentals, the design requirements and the state of the art in primitives for HW security. Challenges and future directions are discussed using recent silicon demonstrations as case studies.
Encrypted Keyword Search in Cloud Computing using Fuzzy Logic. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). :1–4.
.
2019. Research and Development, and information management professionals routinely employ simple keyword searches or more complex Boolean queries when using databases such as PubMed and Ovid and search engines like Google to find the information they need. While satisfying the basic needs of the researcher, basic search is limited which can adversely affect both precision and recall, decreasing productivity and damaging the researchers' ability to discover new insights. The cloud service providers who store user's data may access sensitive information without any proper authority. A basic approach to save the data confidentiality is to encrypt the data. Data encryption also demands the protection of keyword privacy since those usually contain very vital information related to the files. Encryption of keywords protects keyword safety. Fuzzy keyword search enhances system usability by matching the files perfectly or to the nearest possible files against the keywords entered by the user based on similar semantics. Encrypted keyword search in cloud using this logic provides the user, on entering keywords, to receive best possible files in a more secured manner, by protecting the user's documents.
Encrypted LQG Using Labeled Homomorphic Encryption. Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems. :129–140.
.
2019. We consider the problem of implementing a Linear Quadratic Gaussian (LQG) controller on a distributed system, while maintaining the privacy of the measurements, state estimates, control inputs and system model. The component sub-systems and actuator outsource the LQG computation to a cloud controller and encrypt their signals and matrices. The encryption scheme used is Labeled Homomorphic Encryption, which supports the evaluation of degree-2 polynomials on encrypted data, by attaching a unique label to each piece of data and using the fact that the outsourced computation is known by the actuator. We write the state estimate update and control computation as multivariate polynomials in the encrypted data and propose an extension to the Labeled Homomorphic Encryption scheme that achieves the evaluation of low-degree polynomials on encrypted data, with degree larger than two. We showcase the numerical results of the proposed protocol for a temperature control application that indicates competitive online times.
Encryption Algorithm Based on Neural Network. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1—5.
.
2019. Security is one of the most important needs in network communication. Cryptography is a science which involves two techniques encryption and decryption and it basically enables to send sensitive and confidential data over the unsecure network. The basic idea of cryptography is concealing of the data from unauthenticated users as they can misuse the data. In this paper we use auto associative neural network concept of soft computing in combination with encryption technique to send data securely on communication network.
Encryption Based On Multilevel Security for Relational Database EBMSR. 2019 International Conference on Promising Electronic Technologies (ICPET). :130–135.
.
2019. Cryptography is one of the most important sciences today because of the importance of data and the possibility of sharing data via the Internet. Therefore, data must be preserved when stored or transmitted over the Internet. Encryption is used as a solution to protect information during the transmission via an open channel. If the information is obtained illegally, the opponent/ enemy will not be able to understand the information due to encryption. In this paper we have developed a cryptosystem for testing the concepts of multi security level. The information is encrypted using more than one encryption algorithm based on the security level. The proposed cryptosystem concerns of Encryption Based on Multilevel Security (MLS) Model for DBMS. The cryptosystem is designed for both encryption and decryption.
End User Programing of Intelligent Agents Using Demonstrations and Natural Language Instructions. Proceedings of the 24th International Conference on Intelligent User Interfaces: Companion. :143–144.
.
2019. End-user programmable intelligent agents that can learn new tasks and concepts from users' explicit instructions are desired. This paper presents our progress on expanding the capabilities of such agents in the areas of task applicability, task generalizability, user intent disambiguation and support for IoT devices through our multi-modal approach of combining programming by demonstration (PBD) with learning from natural language instructions. Our future directions include facilitating better script reuse and sharing, and supporting greater user expressiveness in instructions.
Endpoint Protection: Measuring the Effectiveness of Remediation Technologies and Methodologies for Insider Threat. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :81–89.
.
2019. With the increase in the incidences of data leakage, enterprises have started to realize that the endpoints (especially mobile devices) used by their employees are the primary cause of data breach in most of the cases. Data shows that employee training, which aims to promote the awareness of protecting the sensitive data of the organization is not very useful. Besides, popular third-party cloud services make it even more difficult for employees to keep the secrets of their workplace safer. This pressing issue has caused the emergence of a significant market for various software products that provide endpoint data protection for these organizations. Our study will discuss some methods and technologies that deal with traditional, negative endpoint protection: Endpoint protection platform (EPP), and another new, positive endpoint protection: Endpoint detection and response (EDR). The comparison and evaluation between EPP and EDR in mechanism and effectiveness will also be shown. The study also aims to analyze the merits, faults, and key features that an excellent protection software should have. The objective of this paper is to assist small-scale and big-scale companies to improve their understanding of insider threats in such rapidly developing cyberspace, which is full of potential risks and attacks. This will also help the companies to have better control over their employee's endpoint to be able to avoid any future data leaks. It will also help negligent users to comprehend how serious is the problem that they are faced with, and how they should be careful in handling their privacy when they are surfing the Internet while being connected to the company's network. This paper aims to contribute to further research on endpoint detection and protection or some similar topics by trying to predict the future of protection products.
End-to-End Captcha Recognition Using Deep CNN-RNN Network. 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). :54—58.
.
2019. With the development of the Internet, the captcha technology has also been widely used. Captcha technology is used to distinguish between humans and machines, namely Completely Automated Public Turing test to tell Computers and Humans Apart. In this paper, an end-to-end deep CNN-RNN network model is constructed by studying the captcha recognition technology, which realizes the recognition of 4-character text captcha. The CNN-RNN model first constructs a deep residual convolutional neural network based on the residual network structure to accurately extract the input captcha picture features. Then, through the constructed variant RNN network, that is, the two-layer GRU network, the deep internal features of the captcha are extracted, and finally, the output sequence is the 4-character captcha. The experiments results show that the end-to-end deep CNN-RNN network model has a good performance on different captcha datasets, achieving 99% accuracy. And experiment on the few samples dataset which only has 4000 training samples also shows an accuracy of 72.9 % and a certain generalization ability.
End-to-end security assessment framework for connected vehicles. 2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC). :1–6.
.
2019. To increase security and to offer user experiences according to the requirements of a hyper-connected world, modern vehicles are integrating complex electronic systems, being transformed into systems of Cyber-Physical Systems (CPS). While a great diversity of heterogeneous hardware and software components must work together and control in real-time crucial functionalities, cybersecurity for the automotive sector is still in its infancy. This paper provides an analysis of the most common vulnerabilities and risks of connected vehicles, using a real example based on industrial and market-ready technologies. Several components have been implemented to inject and simulate multiple attacks, which enable security services and mitigation actions to be developed and validated.
End-to-End Voice Encryption Based on Multiple Circular Chaotic Permutation. 2019 2nd International Conference on Communication Engineering and Technology (ICCET). :101–106.
.
2019. Voice communication is an important need in daily activities whether delivered with or without technology. Telecommunication technology has accommodated this need by providing a wide range of infrastructure, including large varieties of devices used as intermediary and end devices. One of the cellular technologies that is very widely used by the public is GSM (Global System for Mobile), while in the military, trunked radio is still popular. However, the security systems of GSM and trunked radio have limitations. Therefore, this paper proposes a platform to secure voice data over wireless mobile communication by providing end-to-end encryption. This platform is robust to noise, real-time and remains secure. The proposed encryption utilizes multicircular permutations rotated by expanded keys as dynamic keys to scramble the data. We carry out simulations and testbed implementation to prove that application of the proposed method is feasible.
An Energy Aware Fuzzy Trust based Clustering with group key Management in MANET Multicasting. 2019 2nd International Conference on new Trends in Computing Sciences (ICTCS). :1–5.
.
2019. The group key maintenance in MANET is especially risky, because repeated node movement, link breakdown and lower capacity resources. The member movement needs key refreshment to maintain privacy among members. To survive with these characteristics variety of clustering concepts used to subdivide the network. To establish considerably stable and trustable environment fuzzy based trust clustering taken into consideration with Group key management. The nodes with highest trust and energy elected as Cluster Head and it forms cluster in its range. The proposed work analyze secure multicast transmission by implementing Polynomial-based key management in Fuzzy Trust based clustered networks (FTBCA) for secure multicast transmission that protect against both internal and external attackers and measure the performance by injecting attack models.
Energy Data Security and Multi-Source Coordination Mechanism Based on Blockchain. 2019 IEEE Sustainable Power and Energy Conference (iSPEC). :1979–1983.
.
2019. Energy is the material basis for human society to survive and has a very important strategic position in the national economy. With the advancement of Internet technology and the extensive use of clean energy, the energy industry has demonstrated a new development trend. Based on blockchain technology, this paper analyzes energy data security and multi-source synergy mechanism, processes and classifies a large amount of energy data in energy system, and builds a blockchain-based energy data supervision and transaction model. A summary tree of energy data is proposed; a consensus mechanism based on multi-source collaboration is proposed to ensure efficient negotiation; and finally, blockchain is verified in the energy scenario. This provides reference for the application of blockchain technology in the energy industry.
Energy Efficiency: Digital Signal Processing Interactions Within Smart Grid. 2019 International Conference on Engineering and Emerging Technologies (ICEET). :1–6.
.
2019. Smart Grid (SG) is regarded as complex electrical power system due to massive penetration of Renewable Energy Resources and Distribution Generations. The implementation of adjustable speed drives, advance power electronic devices, and electric arc furnaces are incorporated in SG (the transition from conventional power system). Moreover, SG is an advance, automated, controlled, efficient, digital, and intelligent system that ensures pertinent benefits, such as: (a) consumer empowerment, (b) advanced communication infrastructure, (c) user-friendly system, and (d) supports bi-directional power flow. Digital Signal Processing (DSP) is key tool for SG deployment and provides key solutions to a vast array of complex SG challenges. This research provides a comprehensive study on DSP interactions within SG. The prominent challenges posed by conventional grid, such as: (a) monitoring and control, (b) Electric Vehicles infrastructure, (c) cyber data injection attack, (d) Demand Response management and (e) cyber data injection attack are thoroughly investigated in this research.
Energy-Adaptive Lightweight Hardware Security Module using Partial Dynamic Reconfiguration for Energy Limited Internet of Things Applications. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1—4.
.
2019. Data security is the main challenge in Internet of Things (IoT) applications. Security strength and the immunity to security attacks depend mainly on the available power budget. The power-security level trade-off is the main challenge for low power IoT applications, especially, energy limited IoT applications. In this paper, multiple encryption modes that provide different power consumption and security level values are hardware implemented. In other words, some modes provide high security levels at the expense of high power consumption and other modes provide low power consumption with low security level. Dynamic Partial Reconfiguration (DPR) is utilized to adaptively configure the hardware security module based on the available power budget. For example, for a given power constraint, the DPR controller configures the security module with the security mode that meets the available power constraint. ZC702 evaluation board is utilized to implement the proposed encryption modes using DPR. A Lightweight Authenticated Cipher (ACORN) is the most suitable encryption mode for low power IoT applications as it consumes the minimum power and area among the selected candidates at the expense of low throughput. The whole DPR system is tested with a maximum dynamic power dissipation of 10.08 mW. The suggested DPR system saves about 59.9% of the utilized LUTs compared to the individual implementation of the selected encryption modes.
Enforcing Optimal Moving Target Defense Policies. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:753–759.
.
2019. This paper introduces an approach based on control theory to model, analyze and select optimal security policies for Moving Target Defense (MTD) deployment strategies. A Markov Decision Process (MDP) scheme is presented to model states of the system from attacking point of view. The employed value iteration method is based on the Bellman optimality equation for optimal policy selection for each state defined in the system. The model is then utilized to analyze the impact of various costs on the optimal policy. The MDP model is then applied to two case studies to evaluate the performance of the model.
An Enhanced Approach to Cloud-based Privacy-preserving Benchmarking. 2019 International Conference on Networked Systems (NetSys). :1–8.
.
2019. Benchmarking is an important measure for companies to investigate their performance and to increase efficiency. As companies usually are reluctant to provide their key performance indicators (KPIs) for public benchmarks, privacy-preserving benchmarking systems are required. In this paper, we present an enhanced privacy-preserving benchmarking protocol, which we implemented and evaluated based on the real-world scenario of product cost optimisation. It is based on homomorphic encryption and enables cloud-based KPI comparison, providing a variety of statistical measures. The theoretical and empirical evaluation of our benchmarking system underlines its practicability.
Enhanced Automated-Scripting Method for Improved Management of SQL Injection Penetration Tests on a Large Scale. 2019 IEEE 9th Symposium on Computer Applications Industrial Electronics (ISCAIE). :259–266.
.
2019. Typically, in an assessment project for a web application or database with a large scale and scope, tasks required to be performed by a security analyst are such as SQL injection and penetration testing. To carry out these large-scale tasks, the analyst will have to perform 100 or more SQLi penetration tests on one or more target. This makes the process much more complex and much harder to implement. This paper attempts to compare large-scale SQL injections performed with Manual Methods, which is the benchmark, and the proposed SQLiAutoScript Method. The SQLiAutoScript method uses sqlmap as a tool, in combination with sqlmap scripting and logging features, to facilitate a more effective and manageable approach within a large scale of hundreds or thousands of SQL injection penetration tests. Comparison of the test results for both Manual and SQLiAutoScript approaches and their benefits is included in the comparative analysis. The tests were performed over a scope of 24 SQL injection (SQLi) tests that comprises over 100,000 HTTP requests and injections, and within a total testing run-time period of about 50 hours. The scope of testing also covers both SQLiAutoScript and Manual methods. In the SQLiAutoScript method, each SQL injection test has its own sub-folder and files for data such as results (output), progress (traffic logs) and logging. In this way across all SQLi tests, the results, data and details related to SQLi tests are logged, available, traceable, accurate and not missed out. Available and traceable data also facilitates traceability of failed SQLi tests, and higher recovery and reruns of failed SQLi tests to maximize increased attack surface upon the target.
The Enhanced Graphic Pattern Authentication Scheme Via Handwriting identification. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE). :150–153.
.
2019. Today, Smartphone is a necessary device for people connected to the Internet world. But user privacy and security are still playing important roles in the usage of mobile devices. The user was asked to enter related characters, numbers or drawing a simple graphic on the touch screen as passwords for unlocking the screensaver. Although it could provide the user with a simple and convenient security authentication mechanism, the process is hard to protect against the privacy information leakage under the strict security policy. Nowadays, various keypad lock screen Apps usually provides different type of schemes in unlocking the mobile device screen, such as simple-customized pattern, swipe-to-unlock with a static image and so on. But the vulnerability could provide a chance to hijacker to find out the leakage of graphic pattern information that influences in user information privacy and security.This paper proposes a new graphic pattern authentication mechanism to enhance the strength of that in the keypad lock screen Apps. It integrates random digital graphics and handwriting graphic input track recognition technologies to provide better and more diverse privacy protection and reduce the risk of vulnerability. The proposed mechanism is based on two factor identification scheme. First of all, it randomly changes digital graphic position based on unique passwords every time to increase the difficulty of the stealer's recording. Second, the input track of handwriting graphics is another identification factor for enhancing the complex strength of user authentication as well.
Enhanced Homomorphic Encryption Scheme with PSO for Encryption of Cloud Data. 2019 5th International Conference on Advanced Computing Communication Systems (ICACCS). :395–400.
.
2019. Cloud computing can be described as a distributed design that is accessible to different forms of security intrusions. An encoding technique named homomorphic encoding is used for the encoding of entities which are utilized for the accession of data from cloud server. The main problems of homomorphic encoding scheme are key organization and key allocation. Because of these issues, effectiveness of homomorphic encryption approach decreases. The encoding procedure requires the generation of input, and for this, an approach named Particle swarm optimization is implemented in the presented research study. PSO algorithms are nature encouraged meta-heuristic algorithms. These algorithms are inhabitant reliant. In these algorithms, societal activities of birds and fishes are utilized as an encouragement for the development of a technical mechanism. Relying on the superiority of computations, the results are modified with the help of algorithms which are taken from arbitrarily allocated pattern of particles. With the movement of particles around the searching area, the spontaneity is performed by utilizing a pattern of arithmetical terminology. For the generation of permanent number key for encoding, optimized PSO approach is utilized. MATLAB program is used for the implementation of PSO relied homomorphic algorithm. The investigating outcomes depicts that this technique proves very beneficial on the requisites of resource exploitation and finishing time. PSO relied homomorphic algorithm is more applicable in terms of completion time and resource utilization in comparison with homomorphic algorithm.
Enhanced Lightweight Cloud-assisted Mutual Authentication Scheme for Wearable Devices. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :62–67.
.
2019. With the emergence of IoT, wearable devices are drawing attention and becoming part of our daily life. These wearable devices collect private information about their wearers. Mostly, a secure authentication process is used to verify a legitimate user that relies on the mobile terminal. Similarly, remote cloud services are used for verification and authentication of both wearable devices and wearers. Security is necessary to preserve the privacy of users. Some traditional authentication protocols are proposed which have vulnerabilities and are prone to different attacks like forgery, de-synchronization, and un-traceability issues. To address these vulnerabilities, recently, Wu et al. (2017) proposed a cloud-assisted authentication scheme which is costly in terms of computations required. Therefore this paper proposed an improved, lightweight and computationally efficient authentication scheme for wearable devices. The proposed scheme provides similar level of security as compared to Wu's (2017) scheme but requires 41.2% lesser computations.
Enhanced Simulation Framework for Realisation of Mobility in 6LoWPAN Wireless Sensor Networks. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). :1–4.
.
2019. The intense incursion of the Internet of Things (IoT) into all areas of modern life has led to a need for a more detailed study of these technologies and their mechanisms of work. It is necessary to study mechanisms in order to improve QoS, security, identifying shortest routes, mobility, etc. This paper proposes an enhanced simulation framework that implements an improved mechanism for prioritising traffic on 6LoWPAN networks and the realisation of micro-mobility.
Enhanced Uptime and Firmware Cybersecurity for Grid-Connected Power Electronics. 2019 IEEE CyberPELS (CyberPELS). :1–6.
.
2019. A distributed energy resource prototype is used to show cybersecurity best practices. These best practices include straightforward security techniques, such as encrypted serial communication. The best practices include more sophisticated security techniques, such as a method to evaluate and respond to firmware integrity at run-time. The prototype uses embedded Linux, a hardware-assisted monitor, one or more digital signal processors, and grid-connected power electronics. Security features to protect communication, firmware, power flow, and hardware are developed. The firmware run-time integrity security is presently evaluated, and shown to maintain power electronics uptime during firmware updating. The firmware run-time security feature can be extended to allow software rejuvenation, multi-mission controls, and greater flexibility and security in controls.