Biblio
In the northern gas fields, most data are transmitted via wireless networks, which requires special transmission security measures. Herewith, the gas field infrastructure dictates cybersecurity modules to not only meet standard requirements but also ensure reduced energy consumption. The paper discusses the issue of building such a module for a process control system based on the RTP-04M recorder operating in conjunction with an Android-based mobile device. The software options used for the RSA and Diffie-Hellman data encryption and decryption algorithms on both the RTP-04M and the Android-based mobile device sides in the Keil μVision4 and Android Studio software environments, respectively, have shown that the Diffie-Hellman algorithm is preferable. It provides significant savings in RAM and CPU resources and power consumption of the recorder. In terms of energy efficiency, the implemented programs have been analyzed in the Android Studio (Android Profiler) and Simplicity Studio (Advanced Energy Monitor) environments. The integration of this module into the existing software will improve the field's PCS cybersecurity level due to protecting data transmitted from third-party attacks.
This paper investigates the effects of real time visual biofeedback for improving sports performance using a large scale immersive mixed reality system in which users are able to play a simulated game of curling. The users slide custom curling stones across the floor onto a projected target whose size is dictated by the user’s stress-related physiological measure; heart rate (HR). The higher HR the player has, the smaller the target will be, and vice-versa. In the experiment participants were asked to compete in three different conditions: baseline, with and without the proposed biofeedback. The results show that when providing a visual representation of the player’s HR or "choking" in competition, it helped the player understand their condition and improve competition performance (P-value of 0.0391).
Despite advances regarding autonomous functionality for robots, teleoperation remains a means for performing delicate tasks in safety critical contexts like explosive ordnance disposal (EOD) and ambiguous environments. Immersive stereoscopic displays have been proposed and developed in this regard, but bring about their own specific problems, e.g., simulator sickness. This work builds upon standardized test environments to yield reproducible comparisons between different robotic platforms. The focus was placed on testing three optronic systems of differing degrees of immersion: (1) A laptop display showing multiple monoscopic camera views, (2) an off-the-shelf virtual reality headset coupled with a pantilt-based stereoscopic camera, and (3) a so-called Telepresence Unit, providing fast pan, tilt, yaw rotation, stereoscopic view, and spatial audio. Stereoscopic systems yielded significant faster task completion only for the maneuvering task. As expected, they also induced Simulator Sickness among other results. However, the amount of Simulator Sickness varied between both stereoscopic systems. Collected data suggests that a higher degree of immersion combined with careful system design can reduce the to-be-expected increase of Simulator Sickness compared to the monoscopic camera baseline while making the interface subjectively more effective for certain tasks.