Biblio

Found 1333 results

Filters: First Letter Of Title is E  [Clear All Filters]
2022-08-26
2018-05-28
2018-06-04
Jansuwan, Sarawut, Ryu, Seungkyu, Freckleton, Derek, Chen, Anthony, Heaslip, Kevin.  Submitted.  An evaluation framework of an automated electric transportation system. Proceeding of the 92th Annual Meeting of the Transportation Research Board. 40
2018-05-25
2016-06-29
Ignacio X. Dominguez, Jayant Dhawan, Robert St. Amant, David L. Roberts.  In Press.  Exploring the Effects of Different Text Stimuli on Typing Behavior. International Conference on Cognitive Modeling.

In this work we explore how different cognitive processes af- fected typing patterns through a computer game we call The Typing Game. By manipulating the players’ familiarity with the words in our game through their similarity to dictionary words, and by allowing some players to replay rounds, we found that typing speed improves with familiarity with words, and also with practice, but that these are independent of the number of mistakes that are made when typing. We also found that users who had the opportunity to replay rounds exhibited different typing patterns even before replaying the rounds. 

2023-07-21
Wenqi, Huang, Lingyu, Liang, Xin, Wang, Zhengguo, Ren, Shang, Cao, Xiaotao, Jiang.  2022.  An Early Warning Analysis Model of Metering Equipment Based on Federated Hybrid Expert System. 2022 15th International Symposium on Computational Intelligence and Design (ISCID). :217—220.
The smooth operation of metering equipment is inseparable from the monitoring and analysis of equipment alarm events by automated metering systems. With the generation of big data in power metering and the increasing demand for information security of metering systems in the power industry, how to use big data and protect data security at the same time has become a hot research field. In this paper, we propose a hybrid expert model based on federated learning to deal with the problem of alarm information analysis and identification. The hybrid expert system can divide the metering warning problem into multiple sub-problems for processing, which greatly improves the recognition and prediction accuracy. The experimental results show that our model has high accuracy in judging and identifying equipment faults.
2023-05-12
Verma, Kunaal, Girdhar, Mansi, Hafeez, Azeem, Awad, Selim S..  2022.  ECU Identification using Neural Network Classification and Hyperparameter Tuning. 2022 IEEE International Workshop on Information Forensics and Security (WIFS). :1–6.
Intrusion detection for Controller Area Network (CAN) protocol requires modern methods in order to compete with other electrical architectures. Fingerprint Intrusion Detection Systems (IDS) provide a promising new approach to solve this problem. By characterizing network traffic from known ECUs, hazardous messages can be discriminated. In this article, a modified version of Fingerprint IDS is employed utilizing both step response and spectral characterization of network traffic via neural network training. With the addition of feature set reduction and hyperparameter tuning, this method accomplishes a 99.4% detection rate of trusted ECU traffic.
ISSN: 2157-4774
2023-07-10
Gong, Taiyuan, Zhu, Li.  2022.  Edge Intelligence-based Obstacle Intrusion Detection in Railway Transportation. GLOBECOM 2022 - 2022 IEEE Global Communications Conference. :2981—2986.
Train operation is highly influenced by the rail track state and the surrounding environment. An abnormal obstacle on the rail track will pose a severe threat to the safe operation of urban rail transit. The existing general obstacle detection approaches do not consider the specific urban rail environment and requirements. In this paper, we propose an edge intelligence (EI)-based obstacle intrusion detection system to detect accurate obstacle intrusion in real-time. A two-stage lightweight deep learning model is designed to detect obstacle intrusion and obtain the distance from the train to the obstacle. Edge computing (EC) and 5G are used to conduct the detection model and improve the real-time detection performance. A multi-agent reinforcement learning-based offloading and service migration model is formulated to optimize the edge computing resource. Experimental results show that the two-stage intrusion detection model with the reinforcement learning (RL)-based edge resource optimization model can achieve higher detection accuracy and real-time performance compared to traditional methods.
2023-03-03
Singh, Anuraj, Garg, Puneet, Singh, Himanshu.  2022.  Effect of Timers on the Keystroke Pattern of the Student in a Computer Based Exam. 2022 IEEE 6th Conference on Information and Communication Technology (CICT). :1–6.
This research studies the effect of a countdown timer and a count-up timer on the keystroke pattern of the student and finds out whether changing the timer type changes the keystroke pattern. It also points out which timer affects more students in a timer environment during exams. We used two hypothesis testing statistical Algorithms, namely, the Two-Sample T-Test and One-way ANOVA Test, for analysis to identify the effect of different times our whether significant differences were found in the keystroke pattern or not when different timers were used. The supporting results have been found with determines that timer change can change the keystroke pattern of the student and from the study of hypothesis testing, different students result from different types of stress when they are under different timer environments.
2023-07-21
Kiruthiga, G, Saraswathi, P, Rajkumar, S, Suresh, S, Dhiyanesh, B, Radha, R.  2022.  Effective DDoS Attack Detection using Deep Generative Radial Neural Network in the Cloud Environment. 2022 7th International Conference on Communication and Electronics Systems (ICCES). :675—681.
Recently, internet services have increased rapidly due to the Covid-19 epidemic. As a result, cloud computing applications, which serve end-users as subscriptions, are rising. Cloud computing provides various possibilities like cost savings, time and access to online resources via the internet for end-users. But as the number of cloud users increases, so does the potential for attacks. The availability and efficiency of cloud computing resources may be affected by a Distributed Denial of Service (DDoS) attack that could disrupt services' availability and processing power. DDoS attacks pose a serious threat to the integrity and confidentiality of computer networks and systems that remain important assets in the world today. Since there is no effective way to detect DDoS attacks, it is a reliable weapon for cyber attackers. However, the existing methods have limitations, such as relatively low accuracy detection and high false rate performance. To tackle these issues, this paper proposes a Deep Generative Radial Neural Network (DGRNN) with a sigmoid activation function and Mutual Information Gain based Feature Selection (MIGFS) techniques for detecting DDoS attacks for the cloud environment. Specifically, the proposed first pre-processing step uses data preparation using the (Network Security Lab) NSL-KDD dataset. The MIGFS algorithm detects the most efficient relevant features for DDoS attacks from the pre-processed dataset. The features are calculated by trust evaluation for detecting the attack based on relative features. After that, the proposed DGRNN algorithm is utilized for classification to detect DDoS attacks. The sigmoid activation function is to find accurate results for prediction in the cloud environment. So thus, the proposed experiment provides effective classification accuracy, performance, and time complexity.
2023-07-14
Narayanan, K. Lakshmi, Naresh, R..  2022.  A Effective Encryption and Different Integrity Schemes to Improve the Performance of Cloud Services. 2022 International Conference for Advancement in Technology (ICONAT). :1–5.
Recent modern era becomes a multi-user environment. It's hard to store and retrieve data in secure manner at the end user side is a hectic challenge. Difference of Cloud computing compare to Network Computing can be accessed from multiple company servers. Cloud computing makes the users and organization to opt their services. Due to effective growth of the Cloud Technology. Data security, Data Privacy key validation and tracing of user are severe concern. It is hard to trace malicious users who misuse the secrecy. To reduce the rate of misuse in secrecy user revocation is used. Audit Log helps in Maintaining the history of malicious user also helps in maintaining the data integrity in cloud. Cloud Monitoring Metrics helps in the evaluation survey study of different Metrics. In this paper we give an in depth survey about Back-end of cloud services their concerns and the importance of privacy in cloud, Privacy Mechanism in cloud, Ways to Improve the Privacy in cloud, Hazards, Cloud Computing Issues and Challenges we discuss the need of cryptography and a survey of existing cryptographic algorithms. We discuss about the auditing and its classifications with respect to comparative study. In this paper analyzed various encryption schemes and auditing schemes with several existing algorithms which help in the improvement of cloud services.
2023-01-13
Wu, Haijiang.  2022.  Effective Metrics Modeling of Big Data Technology in Electric Power Information Security. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :607—610.
This article focuses on analyzing the application characteristics of electric power big data, determining the advantages that electric power big data provides to the development of enterprises, and expounding the power information security protection technology and management measures under the background of big data. Focus on the protection of power information security, and fundamentally control the information security control issues of power enterprises. Then analyzed the types of big data structure and effective measurement modeling, and finally combined with the application status of big data concepts in the construction of electric power information networks, and proposed optimization strategies, aiming to promote the effectiveness of big data concepts in power information network management activities. Applying the creation conditions, the results show that the measurement model is improved by 7.8%
2023-09-20
Mantoro, Teddy, Fahriza, Muhammad Elky, Agni Catur Bhakti, Muhammad.  2022.  Effective of Obfuscated Android Malware Detection using Static Analysis. 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED). :1—5.
The effective security system improvement from malware attacks on the Android operating system should be updated and improved. Effective malware detection increases the level of data security and high protection for the users. Malicious software or malware typically finds a means to circumvent the security procedure, even when the user is unaware whether the application can act as malware. The effectiveness of obfuscated android malware detection is evaluated by collecting static analysis data from a data set. The experiment assesses the risk level of which malware dataset using the hash value of the malware and records malware behavior. A set of hash SHA256 malware samples has been obtained from an internet dataset and will be analyzed using static analysis to record malware behavior and evaluate which risk level of the malware. According to the results, most of the algorithms provide the same total score because of the multiple crime inside the malware application.
2023-07-31
Albatoosh, Ahmed H., Shuja'a, Mohamed Ibrahim, Al-Nedawe, Basman M..  2022.  Effectiveness Improvement of Offset Pulse Position Modulation System Using Reed-Solomon Codes. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1—5.
Currently, the pulse position modulation (PPM) schemes are suffering from bandwidth application where the line rate is double that of the initial data rate. Thus, the offset pulse position modulation (OPPM) has been suggested to rectify this concern. Several attempts to improve the OPPM can be found in the open literature. This study focuses on the utilization of Reed Solomon (RS) codes to enhance the forward error correction (FEC) bit error rate, which is not yet explored. The performance of errors of the uncoded OPPM was compared to the one used by RS coded OPPM using the number of photons per pulse, the transmission's efficacy, and bandwidth growth. The results demonstrate that employing FEC coding would increase the system's error performance especially when the RS is operating at its finest settings. Specifically, when operating with a capacity that is equivalent to or even more 0.7, the OPPM with RS code outperforms the uncoded OPPM where the OPPM with MLSD needs only 1.2×103 photons per pulse with an ideal coding rate of about 3/4.
2023-02-17
Inácio, João, Medeiros, Ibéria.  2022.  Effectiveness on C Flaws Checking and Removal. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S). :33–34.
The use of software daily has become inevitable nowadays. Almost all everyday tools and the most different areas (e.g., medicine or telecommunications) are dependent on software. The C programming language is one of the most used languages for software development, such as operating systems, drivers, embedded systems, and industrial products. Even with the appearance of new languages, it remains one of the most used [1] . At the same time, C lacks verification mechanisms, like array boundaries, leaving the entire responsibility to the developer for the correct management of memory and resources. These weaknesses are at the root of buffer overflows (BO) vulnerabilities, which range the first place in the CWE’s top 25 of the most dangerous weaknesses [2] . The exploitation of BO when existing in critical safety systems, such as railways and autonomous cars, can have catastrophic effects for manufacturers or endanger human lives.
2023-07-13
Salman, Zainab, Alomary, Alauddin.  2022.  An Efficient Approach to Reduce the Encryption and Decryption Time Based on the Concept of Unique Values. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :535–540.
Data security has become the most important issue in every institution or company. With the existence of hackers, intruders, and third parties on the cloud, securing data has become more challenging. This paper uses a hybrid encryption method that is based on the Elliptic Curve Cryptography (ECC) and Fully Homomorphic Encryption (FHE). ECC is used as a lightweight encryption algorithm that can provide a good level of security. Besides, FHE is used to enable data computation on the encrypted data in the cloud. In this paper, the concept of unique values is combined with the hybrid encryption method. Using the concept of unique values contributes to decreasing the encryption and decryption time obviously. To evaluate the performance of the combined encryption method, the provided results are compared with the ones in the encryption method without using the concept of unique values. Experiments show that the combined encryption method can reduce the encryption time up to 43% and the decryption time up to 56%.
ISSN: 2770-7466
2023-04-14
Selvaganesh, M., Naveen Karthi, P., Nitish Kumar, V. A., Prashanna Moorthy, S. R..  2022.  Efficient Brute-force handling methodology using Indexed-Cluster Architecture of Splunk. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :697–701.
A brute force is a Hacking methodology used to decrypt login passwords, keys and credentials. Hacks that exploit vulnerabilities in packages are rare, whereas Brute Force attacks aim to be the simplest, cheapest, and most straightforward approach to access a website. Using Splunk to analyse massive amounts of data could be very beneficial. The application enables to capture, search, and analyse log information in real-time. By analysing logs as well as many different sources of system information, security events can be uncovered. A log file, which details the events that have occurred in the environment of the application and the server on which they run, is a valuable piece of information. Identifying the attacks against these systems is possible by analysing and correlating this information. Massive amounts of ambiguous and amorphous information can be analysed with its superior resolution. The paper includes instructions on setting up a Splunk server and routing information there from multiple sources. Practical search examples and pre-built add-on applications are provided. Splunk is a powerful tool that allows users to explore big data with greater ease. Seizure can be tracked in near real-time and can be searched through logs. A short amount of time can be spent on analysing big data using map-reduce technology. Briefly, it helps to analyse unstructured log data to better understand how the applications operate. With Splunk, client can detect patterns in the data through a powerful query language. It is easy to set up alerts and warnings based on the queries, which will help alert client about an ongoing (suspected) activity and generate a notification in real-time.
2023-01-05
Ranganathan, Sathishkumar, Mariappan, Muralindran, Muthukaruppan, Karthigayan.  2022.  Efficient Distributed Consensus Algorithm For Swarm Robotic. 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET). :1–6.
Swarm robotics is a network based multi-device system designed to achieve shared objectives in a synchronized way. This system is widely used in industries like farming, manufacturing, and defense applications. In recent implementations, swarm robotics is integrated with Blockchain based networks to enhance communication, security, and decentralized decision-making capabilities. As most of the current blockchain applications are based on complex consensus algorithms, every individual robot in the swarm network requires high computing power to run these complex algorithms. Thus, it is a challenging task to achieve consensus between the robots in the network. This paper will discuss the details of designing an effective consensus algorithm that meets the requirements of swarm robotics network.
2023-07-28
Abu-Khadrah, Ahmed.  2022.  An Efficient Fuzzy Logic Modelling of TiN Coating Thickness. 2022 International Conference on Business Analytics for Technology and Security (ICBATS). :1—5.
In this paper, fuzzy logic was implemented as a proposed approach for modelling of Thickness as an output response of thin film layer in Titanium Nitrite (TiN). The layer was deposited using Physical Vapor Deposition (PVD) process that uses a sputtering technique to coat insert cutting tools with TiN. Central cubic design (CCD) was used for designing the optimal points of the experiment. In order to develop the fuzzy rules, the experimental data that collected by PVD was used. Triangular membership functions (Trimf) were used to develop the fuzzy prediction model. Residual error (e) and prediction accuracy (A) were used for validating the result of the proposed fuzzy model. The result of the developed fuzzy model with triangular membership function revealed that the average residual error of 0.2 is low and acceptable. Furthermore, the model obtained high prediction accuracy with 90.04%. The result revealed that the rule-based model of fuzzy logic could be an efficient approach to predict coatings layer thickness in the TiN.
2023-01-05
Becher, Kilian, Schäfer, Mirko, Schropfer, Axel, Strufe, Thorsten.  2022.  Efficient Public Verification of Confidential Supply-Chain Transactions. 2022 IEEE Conference on Communications and Network Security (CNS). :308—316.
Ensuring sustainable sourcing of crude materials and production of goods is a pressing problem in consideration of the growing world population and rapid climate change. Supply-chain traceability systems based on distributed ledgers can help to enforce sustainability policies like production limits. We propose two mutually independent distributed-ledger-based protocols that enable public verifiability of policy compliance. They are designed for different supply-chain scenarios and use different privacy-enhancing technologies in order to protect confidential supply-chain data: secret sharing and homomorphic encryption. The protocols can be added to existing supply-chain traceability solutions with minor effort. They ensure confidentiality of transaction details and offer public verifiability of producers' compliance, enabling institutions and even end consumers to evaluate sustainability of supply chains. Through extensive theoretical and empirical evaluation, we show that both protocols perform verification for lifelike supply-chain scenarios in perfectly practical time.
2023-07-12
Li, Fenghua, Chen, Cao, Guo, Yunchuan, Fang, Liang, Guo, Chao, Li, Zifu.  2022.  Efficiently Constructing Topology of Dynamic Networks. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :44—51.
Accurately constructing dynamic network topology is one of the core tasks to provide on-demand security services to the ubiquitous network. Existing schemes cannot accurately construct dynamic network topologies in time. In this paper, we propose a novel scheme to construct the ubiquitous network topology. Firstly, ubiquitous network nodes are divided into three categories: terminal node, sink node, and control node. On this basis, we propose two operation primitives (i.e., addition and subtraction) and three atomic operations (i.e., intersection, union, and fusion), and design a series of algorithms to describe the network change and construct the network topology. We further use our scheme to depict the specific time-varying network topologies, including Satellite Internet and Internet of things. It demonstrates that their communication and security protection modes can be efficiently and accurately constructed on our scheme. The simulation and theoretical analysis also prove that the efficiency of our scheme, and effectively support the orchestration of protection capabilities.
2023-09-07
Fowze, Farhaan, Choudhury, Muhtadi, Forte, Domenic.  2022.  EISec: Exhaustive Information Flow Security of Hardware Intellectual Property Utilizing Symbolic Execution. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Hardware IPs are assumed to be roots-of-trust in complex SoCs. However, their design and security verification are still heavily dependent on manual expertise. Extensive research in this domain has shown that even cryptographic modules may lack information flow security, making them susceptible to remote attacks. Further, when an SoC is in the hands of the attacker, physical attacks such as fault injection are possible. This paper introduces EISec, a novel tool utilizing symbolic execution for exhaustive analysis of hardware IPs. EISec operates at the pre-silicon stage on the gate level netlist of a design. It detects information flow security violations and generates the exhaustive set of control sequences that reproduces them. We further expand its capabilities to quantify the confusion and diffusion present in cryptographic modules and to analyze an FSM's susceptibility to fault injection attacks. The proposed methodology efficiently explores the complete input space of designs utilizing symbolic execution. In short, EISec is a holistic security analysis tool to help hardware designers capture security violations early on and mitigate them by reporting their triggers.
2022-12-01
Henriksen, Eilert, Halden, Ugur, Kuzlu, Murat, Cali, Umit.  2022.  Electrical Load Forecasting Utilizing an Explainable Artificial Intelligence (XAI) Tool on Norwegian Residential Buildings. 2022 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.
Electrical load forecasting is an essential part of the smart grid to maintain a stable and reliable grid along with helping decisions for economic planning. With the integration of more renewable energy resources, especially solar photovoltaic (PV), and transitioning into a prosumer-based grid, electrical load forecasting is deemed to play a crucial role on both regional and household levels. However, most of the existing forecasting methods can be considered black-box models due to deep digitalization enablers, such as Deep Neural Networks (DNN), where human interpretation remains limited. Additionally, the black box character of many models limits insights and applicability. In order to mitigate this shortcoming, eXplainable Artificial Intelligence (XAI) is introduced as a measure to get transparency into the model’s behavior and human interpretation. By utilizing XAI, experienced power market and system professionals can be integrated into developing the data-driven approach, even without knowing the data science domain. In this study, an electrical load forecasting model utilizing an XAI tool for a Norwegian residential building was developed and presented.
2023-03-03
Gunathilake, Nilupulee A., Al-Dubai, Ahmed, Buchanan, William J., Lo, Owen.  2022.  Electromagnetic Side-Channel Attack Resilience against PRESENT Lightweight Block Cipher. 2022 6th International Conference on Cryptography, Security and Privacy (CSP). :51–55.
Lightweight cryptography is a novel diversion from conventional cryptography that targets internet-of-things (IoT) platform due to resource constraints. In comparison, it offers smaller cryptographic primitives such as shorter key sizes, block sizes and lesser energy drainage. The main focus can be seen in algorithm developments in this emerging subject. Thus, verification is carried out based upon theoretical (mathematical) proofs mostly. Among the few available side-channel analysis studies found in literature, the highest percentage is taken by power attacks. PRESENT is a promising lightweight block cipher to be included in IoT devices in the near future. Thus, the emphasis of this paper is on lightweight cryptology, and our investigation shows unavailability of a correlation electromagnetic analysis (CEMA) of it. Hence, in an effort to fill in this research gap, we opted to investigate the capabilities of CEMA against the PRESENT algorithm. This work aims to determine the probability of secret key leakage with a minimum number of electromagnetic (EM) waveforms possible. The process initially started from a simple EM analysis (SEMA) and gradually enhanced up to a CEMA. This paper presents our methodology in attack modelling, current results that indicate a probability of leaking seven bytes of the key and upcoming plans for optimisation. In addition, introductions to lightweight cryptanalysis and theories of EMA are also included.
2023-07-14
Dib, S., Amzert, A. K., Grimes, M., Benchiheb, A., Benmeddour, F..  2022.  Elliptic Curve Cryptography for Medical Image Security. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :1782–1787.
To contribute to medical data security, we propose the application of a modified algorithm on elliptical curves (ECC), initially proposed for text encryption. We implement this algorithm by eliminating the sender-receiver lookup table and grouping the pixel values into pairs to form points on a predefined elliptical curve. Simulation results show that the proposed algorithm offers the best compromise between the quality and the speed of cipher / decipher, especially for large images. A comparative study between ECC and AlGamel showed that the proposed algorithm offers better performance and its application, on medical images, is promising. Medical images contain many pieces of information and are often large. If the cryptographic operation is performed on every single pixel it will take more time. So, working on groups of pixels will be strongly recommended to save time and space.
ISSN: 2474-0446