Biblio
Filters: First Letter Of Title is S [Clear All Filters]
Static Analysis of Infrastructure as Code: a Survey. 2022 IEEE 19th International Conference on Software Architecture Companion (ICSA-C). :218–225.
.
2022. The increasing use of Infrastructure as Code (IaC) in DevOps leads to benefits in speed and reliability of deployment operation, but extends to infrastructure challenges typical of software systems. IaC scripts can contain defects that result in security and reliability issues in the deployed infrastructure: techniques for detecting and preventing them are needed. We analyze and survey the current state of research in this respect by conducting a literature review on static analysis techniques for IaC. We describe analysis techniques, defect categories and platforms targeted by tools in the literature.
Static Malware Analysis using PE Header files API. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :159–162.
.
2022. In today’s fast pacing world, cybercrimes have time and again proved to be one of the biggest hindrances in national development. According to recent trends, most of the times the victim’s data is breached by trapping it in a phishing attack. Security and privacy of user’s data has become a matter of tremendous concern. In order to address this problem and to protect the naive user’s data, a tool which may help to identify whether a window executable is malicious or not by doing static analysis on it has been proposed. As well as a comparative study has been performed by implementing different classification models like Logistic Regression, Neural Network, SVM. The static analysis approach used takes into parameters of the executables, analysis of properties obtained from PE Section Headers i.e. API calls. Comparing different model will provide the best model to be used for static malware analysis
Statistical, Spectral and Graph Representations for Video-Based Facial Expression Recognition in Children. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1725—1729.
.
2022. Child facial expression recognition is a relatively less investigated area within affective computing. Children’s facial expressions differ significantly from adults; thus, it is necessary to develop emotion recognition frameworks that are more objective, descriptive and specific to this target user group. In this paper we propose the first approach that (i) constructs video-level heterogeneous graph representation for facial expression recognition in children, and (ii) predicts children’s facial expressions using the automatically detected Action Units (AUs). To this aim, we construct three separate length-independent representations, namely, statistical, spectral and graph at video-level for detailed multi-level facial behaviour decoding (AU activation status, AU temporal dynamics and spatio-temporal AU activation patterns, respectively). Our experimental results on the LIRIS Children Spontaneous Facial Expression Video Database demonstrate that combining these three feature representations provides the highest accuracy for expression recognition in children.
Stochastic Vulnerability Analysis methodology for Power Transmission Network Considering Wind Generation. 2022 Power System and Green Energy Conference (PSGEC). :85–90.
.
2022. This paper proposes a power network vulnerability analysis method based on topological approach considering of uncertainties from high-penetrated wind generations. In order to assess the influence of the impact of wind generation owing to its variable wind speed etc., the Quasi Monte Carlo based probabilistic load flow is adopted and performed. On the other hand, an extended stochastic topological vulnerability method involving Complex Network theory with probabilistic load flow is proposed. Corresponding metrics, namely stochastic electrical betweenness and stochastic net-ability are proposed respectively and applied to analyze the vulnerability of power network with wind generations. The case study of CIGRE medium voltage benchmark network is performed for illustration and evaluation. Furthermore, a cascading failures model considering the stochastic metrics is also developed to verify the effectiveness of proposed methodology.
Store Management Security System. 2022 Fifth International Conference on Computational Intelligence and Communication Technologies (CCICT). :169–173.
.
2022. Nowadays big shopping marts are expanding their business all over the world but not all marts are fully protected with the advanced security system. Very often we come across cases where people take the things out of the mart without billing. These marts require some advanced features-based security system for them so that they can run an efficient and no-loss business. The idea we are giving here can not only be implemented in marts to enhance their security but can also be used in various other fields to cope up with the incompetent management system. Several issues of the stores like regular stock updating, placing orders for new products, replacing products that have expired can be solved with the idea we present here. We also plan on making the slow processes of billing and checking out of the mart faster and more efficient that would result in customer satisfaction.
Strategy to Increase RFID Security System Using Encryption Algorithm. 2022 8th International Conference on Wireless and Telematics (ICWT). :1–6.
.
2022. The Internet of Things (IoT) is rapidly evolving, allowing physical items to share information and coordinate with other nodes, increasing IoT’s value and being widely applied to various applications. Radio Frequency Identification (RFID) is usually used in IoT applications to automate item identification by establishing symmetrical communication between the tag device and the reader. Because RFID reading data is typically in plain text, a security mechanism is required to ensure that the reading results from this RFID data remain confidential. Researchers propose a lightweight encryption algorithm framework for IoT-based RFID applications to address this security issue. Furthermore, this research assesses the implementation of lightweight encryption algorithms, such as Grain v1 and Espresso, as two systems scenarios. The Grain v1 encryption is the final eSTREAM project that accepts an 80-bit key, 64-bit IV, and has a 160-bit internal state with limited application. In contrast, the Espresso algorithm has been implemented in various applications such as 5G wireless communication. Furthermore, this paper tested the performance of each encryption algorithm in the microcontroller and inspected the network performance in an IoT system.
Strong PUF Security Metrics: Response Sensitivity to Small Challenge Perturbations. 2022 23rd International Symposium on Quality Electronic Design (ISQED). :1—10.
.
2022. This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong PUFs. These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial PUF complexity analyses, and are much easier and more efficient to apply: They do not require detailed knowledge of various ML methods, substantial computation times, or the availability of an internal parametric model of the studied PUF. Our metrics also can be standardized particularly easily. This avoids the sometimes inconclusive or contradictory findings of existing ML-based security test, which may result from the usage of different or non-optimized ML algorithms and hyperparameters, differing hardware resources, or varying numbers of challenge-response pairs in the training phase.This first manuscript within the abovementioned sequence treats one of the conceptually most straightforward security metrics on that path: It investigates the effects that small perturbations in the PUF-challenges have on the resulting PUF-responses. We first develop and implement several sub-metrics that realize this approach in practice. We then empirically show that these metrics have surprising predictive power, and compare our obtained test scores with the known real-world security of several popular Strong PUF designs. The latter include (XOR) Arbiter PUFs, Feed-Forward Arbiter PUFs, and (XOR) Bistable Ring PUFs. Along the way, our manuscript also suggests techniques for representing the results of our metrics graphically, and for interpreting them in a meaningful manner.
Study of Nanosecond Laser Annealing on Silicon Doped Hafnium Oxide Film Crystallization and Capacitor Reliability. 2022 IEEE International Memory Workshop (IMW). :1–4.
.
2022. Study on the effect of nanosecond laser anneal (NLA) induced crystallization of ferroelectric (FE) Si-doped hafnium oxide (HSO) material is reported. The laser energy density (0.3 J/cm2 to 1.3 J/cm2) and pulse count (1.0 to 30) variations are explored as pathways for the HSO based metal-ferroelectric-metal (MFM) capacitors. The increase in energy density shows transition toward ferroelectric film crystallization monitored by the remanent polarization (2Pr) and coercive field (2Ec). The NLA conditions show maximum 2Pr (\$\textbackslashsim 24\textbackslash \textbackslashmu\textbackslashmathrmC/\textbackslashtextcmˆ2\$) comparable to the values obtained from reference rapid thermal processing (RTP). Reliability dependence in terms of fatigue (107 cycles) of MFMs on NLA versus RTP crystallization anneal is highlighted. The NLA based MFMs shows improved fatigue cycling at high fields for the low energy densities compared to an RTP anneal. The maximum fatigue cycles to breakdown shows a characteristic dependence on the laser energy density and pulse count. Leakage current and dielectric breakdown of NLA based MFMs at the transition of amorphous to crystalline film state is reported. The role of NLA based anneal on ferroelectric film crystallization and MFM stack reliability is reported in reference with conventional RTP based anneal.
ISSN: 2573-7503
A Study on a DDH-Based Keyed Homomorphic Encryption Suitable to Machine Learning in the Cloud. 2022 IEEE International Conference on Consumer Electronics – Taiwan. :167—168.
.
2022. Homomorphic encryption is suitable for a machine learning in the cloud such as a privacy-preserving machine learning. However, ordinary homomorphic public key encryption has a problem that public key holders can generate ciphertexts and anyone can execute homomorphic operations. In this paper, we will propose a solution based on the Keyed Homomorphic-Public Key Encryption proposed by Emura et al.
A Study on Brute Force Attack on T-Mobile Leading to SIM-Hijacking and Identity-Theft. 2022 IEEE World AI IoT Congress (AIIoT). :501–507.
.
2022. The 2021 T-Mobile breach conducted by John Erin Binns resulted in the theft of 54 million customers' personal data. The attacker gained entry into T-Mobile's systems through an unprotected router and used brute force techniques to access the sensitive information stored on the internal servers. The data stolen included names, addresses, Social Security Numbers, birthdays, driver's license numbers, ID information, IMEIs, and IMSIs. We analyze the data breach and how it opens the door to identity theft and many other forms of hacking such as SIM Hijacking. SIM Hijacking is a form of hacking in which bad actors can take control of a victim's phone number allowing them means to bypass additional safety measures currently in place to prevent fraud. This paper thoroughly reviews the attack methodology, impact, and attempts to provide an understanding of important measures and possible defense solutions against future attacks. We also detail other social engineering attacks that can be incurred from releasing the leaked data.
Study on Systematic Ransomware Detection Techniques. 2022 24th International Conference on Advanced Communication Technology (ICACT). :297–301.
.
2022. Cyberattacks have been progressed in the fields of Internet of Things, and artificial intelligence technologies using the advanced persistent threat (APT) method recently. The damage caused by ransomware is rapidly spreading among APT attacks, and the range of the damages of individuals, corporations, public institutions, and even governments are increasing. The seriousness of the problem has increased because ransomware has been evolving into an intelligent ransomware attack that spreads over the network to infect multiple users simultaneously. This study used open source endpoint detection and response tools to build and test a framework environment that enables systematic ransomware detection at the network and system level. Experimental results demonstrate that the use of EDR tools can quickly extract ransomware attack features and respond to attacks.
ISSN: 1738-9445
Study on the classification model of lock mechanism in operating system. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA). :857–861.
.
2022. Lock design is an important mechanism for scheduling management and security protection in operating systems. However, there is no effective way to identify the differences and connections among lock models, and users need to spend considerable time to understand different lock architectures. In this paper, we propose a classification scheme that abstracts lock design into three types of models: basic spinlock, semaphore amount extension, lock chain structure, and verify the effectiveness of these three types of lock models in the context of current mainstream applications. We also investigate the specific details of applying this classification method, which can be used as a reference for developers to design lock models, thus shorten the software development cycle.
Supervised learning based intrusion detection for SCADA systems. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). :1–5.
.
2022. Supervisory control and data acquisition (SCADA) systems play pivotal role in the operation of modern critical infrastructures (CIs). Technological advancements, innovations, economic trends, etc. have continued to improve SCADA systems effectiveness and overall CIs’ throughput. However, the trends have also continued to expose SCADA systems to security menaces. Intrusions and attacks on SCADA systems can cause service disruptions, equipment damage or/and even fatalities. The use of conventional intrusion detection models have shown trends of ineffectiveness due to the complexity and sophistication of modern day SCADA attacks and intrusions. Also, SCADA characteristics and requirement necessitate exceptional security considerations with regards to intrusive events’ mitigations. This paper explores the viability of supervised learning algorithms in detecting intrusions specific to SCADA systems and their communication protocols. Specifically, we examine four supervised learning algorithms: Random Forest, Naïve Bayes, J48 Decision Tree and Sequential Minimal Optimization-Support Vector Machines (SMO-SVM) for evaluating SCADA datasets. Two SCADA datasets were used for evaluating the performances of our approach. To improve the classification performances, feature selection using principal component analysis was used to preprocess the datasets. Using prominent classification metrics, the SVM-SMO presented the best overall results with regards to the two datasets. In summary, results showed that supervised learning algorithms were able to classify intrusions targeted against SCADA systems with satisfactory performances.
ISSN: 2377-2697
A Supply Chain Service Cybersecurity Certification Scheme based on the Cybersecurity Act. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :382–387.
.
2022. Since the provision of digital services in our days (e.g. container management, transport of COVID vaccinations or LNG) in most economic sectors (e.g. maritime, health, energy) involve national, EU and non-EU stakeholders compose complex Supply Chain Services (SCS). The security of the SCS is most important and it emphasized in the NIS 2 directive [3] and it is a shared responsibility of all stakeholders involved that will need to be compliant with a scheme. In this paper we present an overview of the proposed Cybersecurity Certification Scheme for Supply Chain Services (EUSCS) as proposed by the European Commission (EC) project CYRENE [1]. The EUSCS scheme covers all the three assurance levels defined in the Cybersecurity Act (CSA) [2] taking into consideration the criticality of SCS according to the NIS 2 directive [3], the ENISA Threat Landscape for Supply Chain Attacks [4] and the CYRENE extended online Information Security Management System (ISMS) that allows all SCS stakeholders to provide and access all information needed for certification purposes making the transition from current national schemes in the EU easier.
Survey of DDoS Attack Detection Technology for Traceability. 2022 IEEE 4th Eurasia Conference on IOT, Communication and Engineering (ECICE). :112–115.
.
2022. Target attack identification and detection has always been a concern of network security in the current environment. However, the economic losses caused by DDoS attacks are also enormous. In recent years, DDoS attack detection has made great progress mainly in the user application layer of the network layer. In this paper, a review and discussion are carried out according to the different detection methods and platforms. This paper mainly includes three parts, which respectively review statistics-based machine learning detection, target attack detection on SDN platform and attack detection on cloud service platform. Finally, the research suggestions for DDoS attack detection are given.
A Survey of Explainable Graph Neural Networks for Cyber Malware Analysis. 2022 IEEE International Conference on Big Data (Big Data). :2932—2939.
.
2022. Malicious cybersecurity activities have become increasingly worrisome for individuals and companies alike. While machine learning methods like Graph Neural Networks (GNNs) have proven successful on the malware detection task, their output is often difficult to understand. Explainable malware detection methods are needed to automatically identify malicious programs and present results to malware analysts in a way that is human interpretable. In this survey, we outline a number of GNN explainability methods and compare their performance on a real-world malware detection dataset. Specifically, we formulated the detection problem as a graph classification problem on the malware Control Flow Graphs (CFGs). We find that gradient-based methods outperform perturbation-based methods in terms of computational expense and performance on explainer-specific metrics (e.g., Fidelity and Sparsity). Our results provide insights into designing new GNN-based models for cyber malware detection and attribution.
A Survey on Blockchain for Bitcoin and Its Future Perspectives. 2022 3rd International Conference on Computing, Analytics and Networks (ICAN). :1–6.
.
2022. The term cryptocurrency refers to a digital currency based on cryptographic concepts that have become popular in recent years. Bitcoin is a decentralized cryptocurrency that uses the distributed append-only public database known as blockchain to record every transaction. The incentive-compatible Proof-of-Work (PoW)-centered decentralized consensus procedure, which is upheld by the network's nodes known as miners, is essential to the safety of bitcoin. Interest in Bitcoin appears to be growing as the market continues to rise. Bitcoins and Blockchains have identical fundamental ideas, which are briefly discussed in this paper. Various studies discuss blockchain as a revolutionary innovation that has various applications, spanning from bitcoins to smart contracts, and also about it being a solution to many issues. Furthermore, many papers are reviewed here that not only look at Bitcoin’s fundamental underpinning technologies, such as Mixing and the Bitcoin Wallets but also at the flaws in it.
A Survey on Byzantine Attack using Secure Cooperative Spectrum Sensing in Cognitive Radio Sensor Network. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :267–270.
.
2022. The strategy of permanently allocating a frequency band in a wireless communication network to one application has led to exceptionally low utilization of the vacant spectrum. By utilizing the unused licensed spectrum along with the unlicensed spectrum, Cognitive Radio Sensor Network (CRSNs) ensures the efficiency of spectrum management. To utilize the spectrum dynamically it is important to safeguard the spectrum sensing. Cooperative Spectrum Sensing (CSS) is recommended for this task. CSS aims to provide reliable spectrum sensing. However, there are various vulnerabilities experienced in CSS which can influence the performance of the network. In this work, the focus is on the Byzantine attack in CSS and current security solutions available to avoid the Byzantines in CRSN.
A Survey on Data Poisoning Attacks and Defenses. 2022 7th IEEE International Conference on Data Science in Cyberspace (DSC). :48—55.
.
2022. With the widespread deployment of data-driven services, the demand for data volumes continues to grow. At present, many applications lack reliable human supervision in the process of data collection, which makes the collected data contain low-quality data or even malicious data. This low-quality or malicious data make AI systems potentially face much security challenges. One of the main security threats in the training phase of machine learning is data poisoning attacks, which compromise model integrity by contaminating training data to make the resulting model skewed or unusable. This paper reviews the relevant researches on data poisoning attacks in various task environments: first, the classification of attacks is summarized, then the defense methods of data poisoning attacks are sorted out, and finally, the possible research directions in the prospect.
A Survey on Mobile Malware Detection Methods using Machine Learning. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0215–0221.
.
2022. The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
A Survey on the Security in Cyber Physical System with Multi-Factor Authentication. 2022 24th International Conference on Advanced Communication Technology (ICACT). :1—8.
.
2022. Cyber-physical Systems can be defined as a complex networked control system, which normally develop by combining several physical components with the cyber space. Cyber Physical System are already a part of our daily life. As its already being a part of everyone life, CPS also have great potential security threats and can be vulnerable to various cyber-attacks without showing any sign directly to component failure. To protect user security and privacy is a fundamental concern of any kind of system; either it’s a simple web application or supplicated professional system. Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it requires extra step from users. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). This paper seeks to analyze and evaluate the most prominent authentication techniques based on accuracy, cost, and feasibility of implementation. We also suggest several authentication schemes which incorporate with Multifactor authentication for CPS.
Survey on Touch Behaviour in Smart Device for User Detection. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–8.
.
2022. Smart Phones being a revolution in this Modern era which is considered a boon as well as a curse, it is a known fact that most kids of the current generation are addictive to smartphones. The National Institute of Health (NIH) has carried out different studies such as exposure of smartphones to children under 12 years old, health risk associated with their usage, social implications, etc. One such study reveals that children who spend more than two hours a day, on smartphones have been seen performing poorly when it comes to language and cognitive skills. In addition, children who spend more than seven hours per day were diagnosed to have a thinner brain cortex. Hence, it is of great importance to control the amount of exposure of children to smartphones, as well as access to irregulated content. Significant research work has gone in this regard with a plethora of inputs features, feature extraction techniques, and machine learning models. This paper is a survey of the State-of-the-art techniques in detecting the age of the user using machine learning models on touch, keystroke dynamics, and sensor data.
ISSN: 2329-7190
Swarm Intelligence applied to SQL Injection. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
.
2022. The Open Web Application Security Project (OWASP) (a non-profit foundation that works to improve computer security) considered, in 2021, injection as one of the biggest risks in web applications. SQL injection despite being a vulnerability easily avoided has a great insurgency in web applications, and its impact is quite nefarious. To identify and exploit vulnerabilities in a system, algorithms based on Swarm Intelligence (SI) can be used. This article proposes and describes a new approach that uses SI and attack vectors to identify Structured Query Language (SQL) Injection vulnerabilities. The results obtained show the efficiency of the proposed approach.
Sybil Attack Detection in VANETs using an AdaBoost Classifier. 2022 International Wireless Communications and Mobile Computing (IWCMC). :217–222.
.
2022. Smart cities are a wide range of projects made to facilitate the problems of everyday life and ensure security. Our interest focuses only on the Intelligent Transport System (ITS) that takes care of the transportation issues using the Vehicular Ad-Hoc Network (VANET) paradigm as its base. VANETs are a promising technology for autonomous driving that provides many benefits to the user conveniences to improve road safety and driving comfort. VANET is a promising technology for autonomous driving that provides many benefits to the user's conveniences by improving road safety and driving comfort. The problem with such rapid development is the continuously increasing digital threats. Among all these threats, we will target the Sybil attack since it has been proved to be one of the most dangerous attacks in VANETs. It allows the attacker to generate multiple forged identities to disseminate numerous false messages, disrupt safety-related services, or misuse the systems. In addition, Machine Learning (ML) is showing a significant influence on classification problems, thus we propose a behavior-based classification algorithm that is tested on the provided VeReMi dataset coupled with various machine learning techniques for comparison. The simulation results prove the ability of our proposed mechanism to detect the Sybil attack in VANETs.
Synthesis of Acoustic Wave Multiport Functions by using Coupling Matrix Methodologies. 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM). :56—59.
.
2022. Acoustic wave (AW) synthesis methodologies have become popular among AW filter designers because they provide a fast and precise seed to start with the design of AW devices. Nowadays, with the increasing complexity of carrier aggregation, there is a strong necessity to develop synthesis methods more focused on multiport filtering schemes. However, when dealing with multiport filtering functions, numerical accuracy plays an important role to succeed with the synthesis process since polynomial degrees are much higher as compared to the standalone filter case. In addition to polynomial degree, the number set of polynomial coefficients is also an important source of error during the extraction of the circuital elements of the filter. Nonetheless, in this paper is demonstrated that coupling matrix approaches are the best choice when the objective is to synthesize filtering functions with complex roots in their characteristic polynomials, which is the case of the channel polynomials of the multiport device.