Biblio
Filters: First Letter Of Title is S [Clear All Filters]
Security Challenges of Blockchain-Based Supply Chain Systems.
.
Submitted. Blockchain has revolutionized supply chain system security, especially with Internet of Things integration. Deploying blockchain in the supply chain incorporates immutability, transparency, and traceability mechanisms that promote secure data sharing and interactions between stakeholders in trustless environments. A blockchain-based supply chain as a layered architecture consists of three main layers: supply chain, blockchain, and IoT. This type of system is safer and more transparent, with better traceability than traditional supply chain; however, the system faces several security issues. This paper briefly discusses the primary security challenges related to blockchain-based supply chain systems.
Spam image detection based on convolutional block attention module.
.
Submitted. Digital communication platforms, such as Gmail and Yahoo, are become essential in our professional and personal lives. In addition to the low cost of e-mails, they are fast. Despite the advantages of these tools, spammers try to send unsolicited e-mail, known as spam, daily. Recently, image spam, a new type of spam e-mail, is developed by spammers in order to avoid detection based on text-based spam filtering systems. Image spam contains more complex information as compared to text spam. For this reason, the detection of image spam is still a challenging task for researchers. Most of the developed image spam filtering systems are based on hand-crafted features and machine learning techniques, which are time-consuming and less efficient. In addition, these systems do not focus on the important features, which can have an impact on the detection process. In this paper, we apply the convolutional block attention module (CBAM) model in order to address the problem of image spam. The experiments are conducted on the available dataset, called image spam hunter (ISH). The results obtained are then compared, using the CBAM model, to other existing state-of-the-art methods. The results obtained have demonstrated that the convolutional block attention module (CBAM) is efficient for image spam detection.
Sparse resource allocation for linear network spread dynamics. IEEE Transactions on Automatic Control. 62:1714–1728}year={2017.
.
Submitted.
Safe Markov Chains for Density Control of ON/OFF Agents with Observed Transitions. {IEEE} Transactions in Automatic Control.
.
Submitted.
Spoof Resilient Coordination of Distributed Multi-Robot Teams. International Symposium on Multi-Robot and Multi-Agent Systems.
.
Submitted.
Stability of traffic flow networks with a polytree topology. Automatica. 66", %number = ":246-253.
.
Submitted. We consider global stability of a flow network model for vehicular traffic. Standard approaches which rely on monotonicity of flow networks for stability analysis do not immediately apply to traffic networks with diverging junctions. In this paper, we show that the network model nonetheless exhibits a mixed monotonicity property. Mixed monotonicity allows us to prove global asymptotic stability by embedding the system in a larger system that is monotone.
Stabilization of networked control systems under clock offsets and quantization. IEEE Trans. on Automat. Contr..
.
Submitted.
Stochastic Optimal Power Flow Based on Data- Driven Distributionally Robust Optimization. American Control Conference.
.
Submitted.
.
Submitted.
Survey of Security Advances in Smart Grid: A Data Driven Approach. IEEE Communications Surveys & Tutorials. 19:397–422.
.
Submitted.
The social engineering behind phishing.. The Next Wave.
.
In Press.
Safe and Effective Elliptic Curve Cryptography Algorithm against Power Analysis. 2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA). :393–397.
.
2022. Having high safety and effective computational property, the elliptic curve cryptosystem is very suitable for embedded mobile environment with resource constraints. Power attack is a powerful cipher attack method, it uses leaking information of cipher-chip in its operation process to attack chip cryptographic algorithms. In view of the situation that the power attack on the elliptic curve cryptosystem mainly concentrates on scalar multiplication operation an improved algorithm FWNAF based on RWNAF is proposed. This algorithm utilizes the fragments window technology further improves the utilization ratio of the storage resource and reduces the “jitter phenomenon” in system computing performance caused by the sharp change in system resources.
Safeguard Algorithm by Conventional Security with DNA Cryptography Method. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :195—201.
.
2022. Encryption defined as change information process (which called plaintext) into an unreadable secret format (which called ciphertext). This ciphertext could not be easily understood by somebody except authorized parson. Decryption is the process to converting ciphertext back into plaintext. Deoxyribonucleic Acid (DNA) based information ciphering techniques recently used in large number of encryption algorithms. DNA used as data carrier and the modern biological technology is used as implementation tool. New encryption algorithm based on DNA is proposed in this paper. The suggested approach consists of three steps (conventional, stream cipher and DNA) to get high security levels. The character was replaced by shifting depend character location in conventional step, convert to ASCII and AddRoundKey was used in stream cipher step. The result from second step converted to DNA then applying AddRoundKey with DNA key. The evaluation performance results proved that the proposed algorithm cipher the important data with high security levels.
Sandbox Integrated Gateway for the Discovery of Cybersecurity Vulnerabilities. 2022 International Symposium on Electronics and Telecommunications (ISETC). :1–4.
.
2022. Emails are widely used as a form of communication and sharing files in an organization. However, email is widely used by cybercriminals to spread malware and carrying out cyber-attacks. We implemented an open-source email gateway in conjunction with a security sandbox for securing emails against malicious attachments. The email gateway scans all incoming and outgoing emails and stops emails containing suspicious files. An automated python script would then send the suspected email to the sandboxing element through sandbox API for further analysis, while the script is used also for the prevention of duplicate results. Moreover, the mail server administrator receives notifications from the email gateway about suspicious attachments. If detected attachment is a true positive based on the sandbox analysis result, email is deleted, otherwise, the email is delivered to the recipient. The paper describes in an empirical way the steps followed during the implementation, results, and conclusions of our research.
ISSN: 2475-7861
SAT: Integrated Multi-agent Blackbox Security Assessment Tool using Machine Learning. 2022 2nd International Conference on Artificial Intelligence (ICAI). :105–111.
.
2022. The widespread adoption of eCommerce, iBanking, and eGovernment institutions has resulted in an exponential rise in the use of web applications. Due to a large number of users, web applications have become a prime target of cybercriminals who want to steal Personally Identifiable Information (PII) and disrupt business activities. Hence, there is a dire need to audit the websites and ensure information security. In this regard, several web vulnerability scanners are employed for vulnerability assessment of web applications but attacks are still increasing day by day. Therefore, a considerable amount of research has been carried out to measure the effectiveness and limitations of the publicly available web scanners. It is identified that most of the publicly available scanners possess weaknesses and do not generate desired results. In this paper, the evaluation of publicly available web vulnerability scanners is performed against the top ten OWASP11OWASP® The Open Web Application Security Project (OWASP) is an online community that produces comprehensive articles, documentation, methodologies, and tools in the arena of web and mobile security. vulnerabilities and their performance is measured on the precision of their results. Based on these results, we proposed an Integrated Multi-Agent Blackbox Security Assessment Tool (SAT) for the security assessment of web applications. Research has proved that the vulnerabilities assessment results of the SAT are more extensive and accurate.
SATAn: Air-Gap Exfiltration Attack via Radio Signals From SATA Cables. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1—10.
.
2022. This paper introduces a new type of attack on isolated, air-gapped workstations. Although air-gap computers have no wireless connectivity, we show that attackers can use the SATA cable as a wireless antenna to transfer radio signals at the 6 GHz frequency band. The Serial ATA (SATA) is a bus interface widely used in modern computers and connects the host bus to mass storage devices such as hard disk drives, optical drives, and solid-state drives. The prevalence of the SATA interface makes this attack highly available to attackers in a wide range of computer systems and IT environments. We discuss related work on this topic and provide technical background. We show the design of the transmitter and receiver and present the implementation of these components. We also demonstrate the attack on different computers and provide the evaluation. The results show that attackers can use the SATA cable to transfer a brief amount of sensitive information from highly secured, air-gap computers wirelessly to a nearby receiver. Furthermore, we show that the attack can operate from user mode, is effective even from inside a Virtual Machine (VM), and can successfully work with other running workloads in the background. Finally, we discuss defense and mitigation techniques for this new air-gap attack.
Scalable and Privacy-Focused Company-Centric Supply Chain Management. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC).
.
2022. Blockchain technology promises to overcome trust and privacy concerns inherent to centralized information sharing. However, current decentralized supply chain management systems do either not meet privacy and scalability requirements or require a trustworthy consortium, which is challenging for increasingly dynamic supply chains with constantly changing participants. In this paper, we propose CCChain, a scalable and privacy-aware supply chain management system that stores all information locally to give companies complete sovereignty over who accesses their data. Still, tamper protection of all data through a permissionless blockchain enables on-demand tracking and tracing of products as well as reliable information sharing while affording the detection of data inconsistencies. Our evaluation confirms that CCChain offers superior scalability in comparison to alternatives while also enabling near real-time tracking and tracing for many, less complex products.
A Scalable Integrated DC/DC Converter with Enhanced Load Transient Response and Security for Emerging SoC Applications. 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (MWSCAS). :1–4.
.
2022. In this paper we propose a novel integrated DC/DC converter featuring a single-input-multiple-output architecture for emerging System-on-Chip applications to improve load transient response and power side-channel security. The converter is able to provide multiple outputs ranging from 0.3V to 0.92V using a global 1V input. By using modularized circuit blocks, the converter can be extended to provide higher power or more outputs with minimal design complexity. Performance metrics including power efficiency and load transient response can be well maintained as well. Implemented in 32nm technology, single output efficiency can reach to 88% for the post layout models. By enabling delay blocks and circuits sharing, the Pearson correlation coefficient of input and output can be reduced to 0.1 under rekeying test. The reference voltage tracking speed is up to 31.95 V/μs and peak load step response is 53 mA/ns. Without capacitors, the converter consumes 2.85 mm2 for high power version and only 1.4 mm2 for the low power case.
A Scalable Single-Input-Multiple-Output DC/DC Converter with Enhanced Load Transient Response and Security for Low-Power SoCs. 2022 IEEE International Symposium on Circuits and Systems (ISCAS). :1497–1501.
.
2022. This paper presents a scalable single-input-multiple-output DC/DC converter targeting load transient response and security improvement for low-power System-on-Chips (SoCs). A two-stage modular architecture is introduced to enable scalability. The shared switched-capacitor pre-charging circuits are implemented to improve load transient response and decouple correlations between inputs and outputs. The demo version of the converter has three identical outputs, each supporting 0.3V to 0.9V with a maximum load current of 150mA. Based on post-layout simulation results in 32nm CMOS process, the converter output provides 19.3V/μs reference tracking speed and 27mA/ns workload transitions with negligible voltage droops or spikes. No cross regulation is observed at any outputs with a worst-case voltage ripple of 68mV. Peak efficiency reaches 85.5% for each output. With variable delays added externally, the input-output correlations can change 10 times and for steady-state operation, such correlation factors are always kept below 0.05. The converter is also scaled to support 6 outputs with only 0.56mm2 more area and maintains same load transient response performance.
ScalaCert: Scalability-Oriented PKI with Redactable Consortium Blockchain Enabled "On-Cert" Certificate Revocation. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :1236–1246.
.
2022. As the voucher for identity, digital certificates and the public key infrastructure (PKI) system have always played a vital role to provide the authentication services. In recent years, with the increase in attacks on traditional centralized PKIs and the extensive deployment of blockchains, researchers have tried to establish blockchain-based secure decentralized PKIs and have made significant progress. Although blockchain enhances security, it brings new problems in scalability due to the inherent limitations of blockchain’s data structure and consensus mechanism, which become much severe for the massive access in the era of 5G and B5G. In this paper, we propose ScalaCert to mitigate the scalability problems of blockchain-based PKIs by utilizing redactable blockchain for "on-cert" revocation. Specifically, we utilize the redactable blockchain to record revocation information directly on the original certificate ("on-cert") and remove additional data structures such as CRL, significantly reducing storage overhead. Moreover, the combination of redactable and consortium blockchains brings a new kind of attack called deception of versions (DoV) attack. To defend against it, we design a random-block-node-check (RBNC) based freshness check mechanism. Security and performance analyses show that ScalaCert has sufficient security and effectively solves the scalability problem of the blockchain-based PKI system.
SCGAN: Generative Adversarial Networks of Skip Connection for Face Image Inpainting. 2022 Ninth International Conference on Social Networks Analysis, Management and Security (SNAMS). :1–6.
.
2022. Deep learning has been widely applied for jobs involving face inpainting, however, there are usually some problems, such as incoherent inpainting edges, lack of diversity of generated images and other problems. In order to get more feature information and improve the inpainting effect, we therefore propose a Generative Adversarial Network of Skip Connection (SCGAN), which connects the encoder layers and the decoder layers by skip connection in the generator. The coherence and consistency of the image inpainting edges are improved, and the finer features of the image inpainting are refined, simultaneously using the discriminator's local and global double discriminators model. We also employ WGAN-GP loss to enhance model stability during training, prevent model collapse, and increase the variety of inpainting face images. Finally, experiments on the CelebA dataset and the LFW dataset are performed, and the model's performance is assessed using the PSNR and SSIM indices. Our model's face image inpainting is more realistic and coherent than that of other models, and the model training is more reliable.
ISSN: 2831-7343
Schedule or Wait: Age-Minimization for IoT Big Data Processing in MEC via Online Learning. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications. :1809–1818.
.
2022. The age of data (AoD) is identified as one of the most novel and important metrics to measure the quality of big data analytics for Internet-of-Things (IoT) applications. Meanwhile, mobile edge computing (MEC) is envisioned as an enabling technology to minimize the AoD of IoT applications by processing the data in edge servers close to IoT devices. In this paper, we study the AoD minimization problem for IoT big data processing in MEC networks. We first propose an exact solution for the problem by formulating it as an Integer Linear Program (ILP). We then propose an efficient heuristic for the offline AoD minimization problem. We also devise an approximation algorithm with a provable approximation ratio for a special case of the problem, by leveraging the parametric rounding technique. We thirdly develop an online learning algorithm with a bounded regret for the online AoD minimization problem under dynamic arrivals of IoT requests and uncertain network delay assumptions, by adopting the Multi-Armed Bandit (MAB) technique. We finally evaluate the performance of the proposed algorithms by extensive simulations and implementations in a real test-bed. Results show that the proposed algorithms outperform existing approaches by reducing the AoD around 10%.
ISSN: 2641-9874
SECOM: Towards a convention for security commit messages. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :764—765.
.
2022. One way to detect and assess software vulnerabilities is by extracting security-related information from commit messages. Automating the detection and assessment of vulnerabilities upon security commit messages is still challenging due to the lack of structured and clear messages. We created a convention, called SECOM, for security commit messages that structure and include bits of security-related information that are essential for detecting and assessing vulnerabilities for both humans and tools. The full convention and details are available here: https://tqrg.github.io/secom/.
On Secrecy Performance in Underlay Cognitive Radio Networks with EH and TAS over α-μ Channel. 2022 13th International Conference on Information and Communication Systems (ICICS). :463–468.
.
2022. This paper investigates the secrecy outage performance of Multiple Input Multiple Output (MIMO) secondary nodes for underlay Cognitive Radio Network (CRN) over α–μ fading channel. Here, the proposed system consists of one active eavesdropper and two primary nodes each with a single antenna. The power of the secondary transmitter depends on the harvested energy from the primary transmitter to save more energy and spectrum. Moreover, a Transmit Antenna Selection (TAS) scheme is adopted at the secondary source, while the Maximal Ratio Combining (MRC) technique is employed at the secondary receiver to optimize the quality of the signal. A lower bound closed-form phrase for the secrecy outage performance is derived to demonstrate the effects of the channel parameters. In addition, numerical results illustrate that the number of source transmit antennas, destination received antenna, and the eavesdropper received antenna have significant effects on improving the secrecy performance.
Secret Numerical Interval Decision Protocol for Protecting Private Information and Its Application. 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML). :726–731.
.
2022. Cooperative secure computing based on the relationship between numerical value and numerical interval is not only the basic problems of secure multiparty computing but also the core problems of cooperative secure computing. It is of substantial theoretical and practical significance for information security in relation to scientific computing to continuously investigate and construct solutions to such problems. Based on the Goldwasser-Micali homomorphic encryption scheme, this paper propose the Morton rule, according to the characteristics of the interval, a double-length vector is constructed to participate in the exclusive-or operation, and an efficient cooperative decision-making solution for integer and integer interval security is designed. This solution can solve more basic problems in cooperative security computation after suitable transformations. A theoretical analysis shows that this solution is safe and efficient. Finally, applications that are based on these protocols are presented.