Biblio

Found 2465 results

Filters: First Letter Of Title is S  [Clear All Filters]
2023-04-14
Pahlevi, Rizka Reza, Suryani, Vera, Nuha, Hilal Hudan, Yasirandi, Rahmat.  2022.  Secure Two-Factor Authentication for IoT Device. 2022 10th International Conference on Information and Communication Technology (ICoICT). :407–412.
The development of IoT has penetrated various sectors. The development of IoT devices continues to increase and is predicted to reach 75 billion by 2025. However, the development of IoT devices is not followed by security developments. Therefore, IoT devices can become gateways for cyber attacks, including brute force and sniffing attacks. Authentication mechanisms can be used to ward off attacks. However, the implementation of authentication mechanisms on IoT devices is challenging. IoT devices are dominated by constraint devices that have limited computing. Thus, conventional authentication mechanisms are not suitable for use. Two-factor authentication using RFID and fingerprint can be a solution in providing an authentication mechanism. Previous studies have proposed a two-factor authentication mechanism using RFID and fingerprint. However, previous research did not pay attention to message exchange security issues and did not provide mutual authentication. This research proposes a secure mutual authentication protocol using two-factor RFID and fingerprint using MQTT protocol. Two processes support the authentication process: the registration process and authentication. The proposed protocol is tested based on biometric security by measuring the false acceptance rate (FAR) and false rejection rate (FRR) on the fingerprint, measuring brute force attacks, and measuring sniffing attacks. The test results obtained the most optimal FAR and FRR at the 80% threshold. Then the equal error rate (ERR) on FAR and FRR is around 59.5%. Then, testing brute force and sniffing attacks found that the proposed protocol is resistant to both attacks.
2023-02-17
El-Korashy, Akram, Blanco, Roberto, Thibault, Jérémy, Durier, Adrien, Garg, Deepak, Hritcu, Catalin.  2022.  SecurePtrs: Proving Secure Compilation with Data-Flow Back-Translation and Turn-Taking Simulation. 2022 IEEE 35th Computer Security Foundations Symposium (CSF). :64–79.

Proving secure compilation of partial programs typically requires back-translating an attack against the compiled program to an attack against the source program. To prove back-translation, one can syntactically translate the target attacker to a source one-i.e., syntax-directed back-translation-or show that the interaction traces of the target attacker can also be emitted by source attackers—i.e., trace-directed back-translation. Syntax-directed back-translation is not suitable when the target attacker may use unstructured control flow that the source language cannot directly represent. Trace-directed back-translation works with such syntactic dissimilarity because only the external interactions of the target attacker have to be mimicked in the source, not its internal control flow. Revealing only external interactions is, however, inconvenient when sharing memory via unforgeable pointers, since information about shared pointers stashed in private memory is not present on the trace. This made prior proofs unnecessarily complex, since the generated attacker had to instead stash all reachable pointers. In this work, we introduce more informative data-flow traces, combining the best of syntax- and trace-directed back-translation in a simpler technique that handles both syntactic dissimilarity and memory sharing well, and that is proved correct in Coq. Additionally, we develop a novel turn-taking simulation relation and use it to prove a recomposition lemma, which is key to reusing compiler correctness in such secure compilation proofs. We are the first to mechanize such a recomposition lemma in the presence of memory sharing. We use these two innovations in a secure compilation proof for a code generation compiler pass between a source language with structured control flow and a target language with unstructured control flow, both with safe pointers and components.

2023-02-02
Shi, Haoxiang, Liu, Wu, Liu, Jingyu, Ai, Jun, Yang, Chunhui.  2022.  A Software Defect Location Method based on Static Analysis Results. 2022 9th International Conference on Dependable Systems and Their Applications (DSA). :876–886.

Code-graph based software defect prediction methods have become a research focus in SDP field. Among them, Code Property Graph is used as a form of data representation for code defects due to its ability to characterize the structural features and dependencies of defect codes. However, since the coarse granularity of Code Property Graph, redundant information which is not related to defects often attached to the characterization of software defects. Thus, it is a problem to be solved in how to locate software defects at a finer granularity in Code Property Graph. Static analysis is a technique for identifying software defects using set defect rules, and there are many proven static analysis tools in the industry. In this paper, we propose a method for locating specific types of defects in the Code Property Graph based on the result of static analysis tool. Experiments show that the location method based on static analysis results can effectively predict the location of specific defect types in real software program.

2023-05-12
Lai, Chengzhe, Wang, Menghua, Zheng, Dong.  2022.  SPDT: Secure and Privacy-Preserving Scheme for Digital Twin-based Traffic Control. 2022 IEEE/CIC International Conference on Communications in China (ICCC). :144–149.
With the increasing complexity of the driving environment, more and more attention has been paid to the research on improving the intelligentization of traffic control. Among them, the digital twin-based internet of vehicle can establish a mirror system on the cloud to improve the efficiency of communication between vehicles, provide warning and safety instructions for drivers, avoid driving potential dangers. To ensure the security and effectiveness of data sharing in traffic control, this paper proposes a secure and privacy-preserving scheme for digital twin-based traffic control. Specifically, in the data uploading phase, we employ a group signature with a time-bound keys technique to realize data source authentication with efficient members revocation and privacy protection, which can ensure that data can be securely stored on cloud service providers after it synchronizes to its twin. In the data sharing stage, we employ the secure and efficient attribute-based access control technique to provide flexible and efficient data sharing, in which the parameters of a specific sub-policy can be stored during the first decryption and reused in subsequent data access containing the same sub-policy, thus reducing the computing complexity. Finally, we analyze the security and efficiency of the scheme theoretically.
ISSN: 2377-8644
Lakshmi, Swathy, Kumar, Renjith H.  2022.  Secure Communication between Arduinos using Controller Area Network(CAN) Bus. 2022 IEEE International Power and Renewable Energy Conference (IPRECON). :1–6.
Present-day vehicles have numerous Electronic Control Units (ECUs) and they communicate with each other over a network known as the Controller Area Network(CAN) bus. In this way, the CAN bus is a fundamental component of intra-vehicle communication. The CAN bus was designed without focusing on communication security and in this way it is vulnerable to many cyber attacks. As the vehicles are always connected to the Internet, the CAN bus is remotely accessible and could be hacked. To secure the communication between ECUs and defend against these cyber attacks, we apply a Hash Message Authentication Code(HMAC) to automotive data and demonstrate the CAN bus communication between two ECUs using Arduino UNO and MCP2515 CAN bus module.
2023-06-22
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.  2022.  Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.

A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.

2023-07-14
Bourreau, Hugo, Guichet, Emeric, Barrak, Amine, Simon, Benoît, Jaafar, Fehmi.  2022.  On Securing the Communication in IoT Infrastructure using Elliptic Curve Cryptography. 2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C). :758–759.
Internet of Things (IoT) is widely present nowadays, from businesses to connected houses, and more. IoT is considered a part of the Internet of the future and will comprise billions of intelligent communication. These devices transmit data from sensors to entities like servers to perform suitable responses. The problem of securing these data from cyberattacks increases due to the sensitive information it contains. In addition, studies have shown that most of the time data transiting in IoT devices does not apply encrypted communication. Thus, anyone has the ability to listen to or modify the information. Encrypting communications seems mandatory to secure networks and data transiting from sensors to servers. In this paper, we propose an approach to secure the transmission and the storage of data in IoT using Elliptic Curve Cryptography (ECC). The proposed method offers a high level of security at a reasonable computational cost. Indeed, we present an adequate architecture that ensures the use of a state-of-the-art cryptography algorithm to encrypt sensitive data in IoT.
ISSN: 2693-9371
Rui, Li, Liu, Jun, Lu, Miaoxia.  2022.  Security Authentication Scheme for Low Earth Orbit Satellites Based on Spatial Channel Characteristics. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :396–400.
Security authentication can effectively solve the problem of access to Low Earth Orbit (LEO) satellites. However, the existing solutions still harbor some problems in the computational complexity of satellite authentication, flexible networking, resistance to brute force attacks and other aspects. So, a security authentication scheme for LEO satellites that integrates spatial channel characteristics is designed within the software defined network architecture. In this scheme, the spatial channel characteristics are introduced to the subsequent lightweight encryption algorithm to achieve effective defense against brute force attacks. According to security analysis and simulation results, the scheme can effectively reduce the computational overhead while protecting against replay attacks, brute force attacks, DOS attacks, and other known attacks.
2023-09-08
Deng, Wei, Liu, Wei, Liu, Xinlin, Zhang, Jian.  2022.  Security Classification of Mobile Intelligent Terminal Based on Multi-source Data Fusion. 2022 4th International Conference on Frontiers Technology of Information and Computer (ICFTIC). :427–430.
The application of mobile intelligent terminal in the environment is very complex, and its own computing capacity is also very limited, so it is vulnerable to malicious attacks. The security classification of mobile intelligent terminals can effectively ensure the security of their use. Therefore, a security classification method for mobile intelligent terminals based on multi-source data fusion is proposed. The Boolean value is used to count the multi-source data of the mobile intelligent terminal, and the word frequency method is used to calculate the weight of the multi-source data of the mobile intelligent terminal. The D-S evidence theory is used to complete the multi-source data fusion of the mobile intelligent terminal and implement the multi-source data fusion processing of the mobile intelligent terminal. On this basis, the security level permission value of mobile intelligent terminal is calculated to achieve the security level division of mobile intelligent terminal based on multi-source data fusion. The experimental results show that the accuracy of mobile intelligent terminal security classification is higher than 96% and the classification time is less than 3.8 ms after the application of the proposed method. Therefore, the security level of mobile intelligent terminals after the application of this method is high, and the security performance of mobile intelligent terminals is strong, which can effectively improve the accuracy of security classification and shorten the time of security classification.
2023-06-30
Pan, Xiyu, Mohammadi, Neda, Taylor, John E..  2022.  Smart City Digital Twins for Public Safety: A Deep Learning and Simulation Based Method for Dynamic Sensing and Decision-Making. 2022 Winter Simulation Conference (WSC). :808–818.
Technological innovations are expanding rapidly in the public safety sector providing opportunities for more targeted and comprehensive urban crime deterrence and detection. Yet, the spatial dispersion of crimes may vary over time. Therefore, it is unclear whether and how sensors can optimally impact crime rates. We developed a Smart City Digital Twin-based method to dynamically place license plate reader (LPR) sensors and improve their detection and deterrence performance. Utilizing continuously updated crime records, the convolutional long short-term memory algorithm predicted areas crimes were most likely to occur. Then, a Monte Carlo traffic simulation simulated suspect vehicle movements to determine the most likely routes to flee crime scenes. Dynamic LPR placement predictions were made weekly, capturing the spatiotemporal variation in crimes and enhancing LPR performance relative to static placement. We tested the proposed method in Warner Robins, GA, and results support the method's promise in detecting and deterring crime.
ISSN: 1558-4305
2023-05-19
Acheampong, Edward Mensah, Zhou, Shijie, Liao, Yongjian, Antwi-Boasiako, Emmanuel, Obiri, Isaac Amankona.  2022.  Smart Health Records Sharing Scheme based on Partially Policy-Hidden CP-ABE with Leakage Resilience. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). :1408—1415.
With the rapid innovation of cloud computing technologies, which has enhanced the application of the Internet of Things (IoT), smart health (s-health) is expected to enhance the quality of the healthcare system. However, s-health records (SHRs) outsourcing, storage, and sharing via a cloud server must be protected and users attribute privacy issues from the public domain. Ciphertext policy attribute-based encryption (CP-ABE) is the cryptographic primitive which is promising to provide fine-grained access control in the cloud environment. However, the direct application of traditional CP-ABE has brought a lot of security issues like attributes' privacy violations and vulnerability in the future by potential powerful attackers like side-channel and cold-bot attacks. To solve these problems, a lot of CP-ABE schemes have been proposed but none of them concurrently support partially policy-hidden and leakage resilience. Hence, we propose a new Smart Health Records Sharing Scheme that will be based on Partially Policy-Hidden CP-ABE with Leakage Resilience which is resilient to bound leakage from each of many secret keys per user, as well as many master keys, and ensure attribute privacy. Our scheme hides attribute values of users in both secret key and ciphertext which contain sensitive information in the cloud environment and are fully secure in the standard model under the static assumptions.
2023-06-22
Hu, Fanliang, Ni, Feng.  2022.  Software Implementation of AES-128: Side Channel Attacks Based on Power Traces Decomposition. 2022 International Conference on Cyber Warfare and Security (ICCWS). :14–21.
Side Channel Attacks (SCAs), an attack that exploits the physical information generated when an encryption algorithm is executed on a device to recover the key, has become one of the key threats to the security of encrypted devices. Recently, with the development of deep learning, deep learning techniques have been applied to SCAs with good results on publicly available dataset experiences. In this paper, we propose a power traces decomposition method that divides the original power traces into two parts, where the data-influenced part is defined as data power traces (Tdata) and the other part is defined as device constant power traces, and use the Tdata for training the network model, which has more obvious advantages than using the original power traces for training the network model. To verify the effectiveness of the approach, we evaluated the ATXmega128D4 microcontroller by capturing the power traces generated when implementing AES-128. Experimental results show that network models trained using Tdata outperform network models trained using raw power traces (Traw ) in terms of classification accuracy, training time, cross-subkey recovery key, and cross-device recovery key.
2023-07-21
Concepcion, A. R., Sy, C..  2022.  A System Dynamics Model of False News on Social Networking Sites. 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :0786—0790.
Over the years, false news has polluted the online media landscape across the world. In this “post-truth” era, the narratives created by false news have now come into fruition through dismantled democracies, disbelief in science, and hyper-polarized societies. Despite increased efforts in fact-checking & labeling, strengthening detection systems, de-platforming powerful users, promoting media literacy and awareness of the issue, false news continues to be spread exponentially. This study models the behaviors of both the victims of false news and the platform in which it is spread— through the system dynamics methodology. The model was used to develop a policy design by evaluating existing and proposed solutions. The results recommended actively countering confirmation bias, restructuring social networking sites’ recommendation algorithms, and increasing public trust in news organizations.
2023-07-14
Sunil Raj, Y., Albert Rabara, S., Britto Ramesh Kumar, S..  2022.  A Security Architecture for Cloud Data Using Hybrid Security Scheme. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1766–1774.
Cloud Computing revolutionize the usage of Internet of Things enabled devices integrated via Internet. Providing everything in an outsourced fashion, Cloud also lends infrastructures such as storage. Though cloud makes it easy for us to store and access the data faster and easier, yet there exist various security and privacy risks. Such issues if not handled may become more threatening as it could even disclose the privacy of an individual/ organization. Strengthening the security of data is need of the hour. The work proposes a novel architecture enhancing the security of Cloud data in an IoT integrated environment. In order to enhance the security, systematic use of a modified hybrid mechanism based on DNA code and Elliptic Curve Cryptography along with Third Party Audit is proposed. The performance of the proposed mechanism has been analysed. The results ensures that proposed IoT Cloud architecture performs better while providing strong security which is the major aspect of the work.
2023-08-11
Suwandi, Rifki, Wuryandari, Aciek Ida.  2022.  A Safe Approach to Sensitive Dropout Data Collection Systems by Utilizing Homomorphic Encryption. 2022 International Symposium on Information Technology and Digital Innovation (ISITDI). :168—171.
The student's fault is not the only cause of dropping out of school. Often, cases of dropping out of school are only associated with too general problems. However, sensitive issues that can be detrimental to certain parties in this regard, such as the institution's reputation, are usually not made public. To overcome this, an in-depth analysis of these cases is needed for proper handling. Many risks are associated with creating a single repository for this sensitive information. Therefore, some encryption is required to ensure data is not leaked. However, encryption at rest and in transit is insufficient as data leakage is a considerable risk during processing. In addition, there is also a risk of abuse of authority by insiders so that no single entity is allowed to have access to all data. Homomorphic encryption presents a viable solution to this challenge. Data may be aggregated under the security provided by Homomorphic Encryption. This method makes the data available for computation without being decrypted first and without paying the risk of having a single repository.
2023-04-28
Nguyen, Tu-Trinh Thi, Nguyen, Xuan-Xinh, Kha, Ha Hoang.  2022.  Secrecy Outage Performance Analysis for IRS-Aided Cognitive Radio NOMA Networks. 2022 IEEE Ninth International Conference on Communications and Electronics (ICCE). :149–154.
This paper investigates the physical layer security of a cognitive radio (CR) non-orthogonal multiple-access (NOMA) network supported by an intelligent reflecting surface (IRS). In a CR network, a secondary base station (BS) serves a couple of users, i.e., near and far users, via NOMA transmission under eavesdropping from a malicious attacker. It is assumed that the direct transmission link from the BS and far user is absent due to obstacles. Thus, an IRS is utilized to support far user communication, however, the communication links between the IRS and near/primary users are neglected because of heavy attenuation. The exact secrecy outage probability (SOP) for the near user and approximate SOP for the far user are then derived in closed-form by using the Gauss-Chebyshev approach. The accuracy of the derived analytical SOP is then verified through Monte Carlo simulations. The simulation results also provide useful insights on the impacts of the number of IRS reflecting elements and limited interference temperature on the system SOP.
2023-08-03
Ndichu, Samuel, Ban, Tao, Takahashi, Takeshi, Inoue, Daisuke.  2022.  Security-Alert Screening with Oversampling Based on Conditional Generative Adversarial Networks. 2022 17th Asia Joint Conference on Information Security (AsiaJCIS). :1–7.
Imbalanced class distribution can cause information loss and missed/false alarms for deep learning and machine-learning algorithms. The detection performance of traditional intrusion detection systems tend to degenerate due to skewed class distribution caused by the uneven allocation of observations in different kinds of attacks. To combat class imbalance and improve network intrusion detection performance, we adopt the conditional generative adversarial network (CTGAN) that enables the generation of samples of specific classes of interest. CTGAN builds on the generative adversarial networks (GAN) architecture to model tabular data and generate high quality synthetic data by conditionally sampling rows from the generated model. Oversampling using CTGAN adds instances to the minority class such that both data in the majority and the minority class are of equal distribution. The generated security alerts are used for training classifiers that realize critical alert detection. The proposed scheme is evaluated on a real-world dataset collected from security operation center of a large enterprise. The experiment results show that detection accuracy can be substantially improved when CTGAN is adopted to produce a balanced security-alert dataset. We believe the proposed CTGAN-based approach can cast new light on building effective systems for critical alert detection with reduced missed/false alarms.
ISSN: 2765-9712
2023-01-06
Rasch, Martina, Martino, Antonio, Drobics, Mario, Merenda, Massimo.  2022.  Short-Term Time Series Forecasting based on Edge Machine Learning Techniques for IoT devices. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech). :1—5.
As the effects of climate change are becoming more and more evident, the importance of improved situation awareness is also gaining more attention, both in the context of preventive environmental monitoring and in the context of acute crisis response. One important aspect of situation awareness is the correct and thorough monitoring of air pollutants. The monitoring is threatened by sensor faults, power or network failures, or other hazards leading to missing or incorrect data transmission. For this reason, in this work we propose two complementary approaches for predicting missing sensor data and a combined technique for detecting outliers. The proposed solution can enhance the performance of low-cost sensor systems, closing the gap of missing measurements due to network unavailability, detecting drift and outliers thus paving the way to its use as an alert system for reportable events. The techniques have been deployed and tested also in a low power microcontroller environment, verifying the suitability of such a computing power to perform the inference locally, leading the way to an edge implementation of a virtual sensor digital twin.
2023-02-17
Caramancion, Kevin Matthe.  2022.  Same Form, Different Payloads: A Comparative Vector Assessment of DDoS and Disinformation Attacks. 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). :1–6.
This paper offers a comparative vector assessment of DDoS and disinformation attacks. The assessed dimensions are as follows: (1) the threat agent, (2) attack vector, (3) target, (4) impact, and (5) defense. The results revealed that disinformation attacks, anchoring on astroturfs, resemble DDoS’s zombie computers in their method of amplification. Although DDoS affects several layers of the OSI model, disinformation attacks exclusively affect the application layer. Furthermore, even though their payloads and objectives are different, their vector paths and network designs are very similar. This paper, as its conclusion, strongly recommends the classification of disinformation as an actual cybersecurity threat to eliminate the inconsistencies in policies in social networking platforms. The intended target audiences of this paper are IT and cybersecurity experts, computer and information scientists, policymakers, legal and judicial scholars, and other professionals seeking references on this matter.
2023-06-16
Lavania, Kushagra, Gupta, Gaurang, Kumar, D.V.N. Siva.  2022.  A Secure and Efficient Fine-Grained Deletion Approach over Encrypted Data. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1123—1128.
Documents are a common method of storing infor-mation and one of the most conventional forms of expression of ideas. Cloud servers store a user's documents with thousands of other users in place of physical storage devices. Indexes corresponding to the documents are also stored at the cloud server to enable the users to retrieve documents of their interest. The index includes keywords, document identities in which the keywords appear, along with Term Frequency-Inverse Document Frequency (TF-IDF) values which reflect the keywords' relevance scores of the dataset. Currently, there are no efficient methods to delete keywords from millions of documents over cloud servers while avoiding any compromise to the user's privacy. Most of the existing approaches use algorithms that divide a bigger problem into sub-problems and then combine them like divide and conquer problems. These approaches don't focus entirely on fine-grained deletion. This work is focused on achieving fine-grained deletion of keywords by keeping the size of the TF-IDF matrix constant after processing the deletion query, which comprises of keywords to be deleted. The experimental results of the proposed approach confirm that the precision of ranked search still remains very high after deletion without recalculation of the TF-IDF matrix.
2022-12-23
Montano, Isabel Herrera, de La Torre Díez, Isabel, Aranda, Jose Javier García, Diaz, Juan Ramos, Cardín, Sergio Molina, López, Juan José Guerrero.  2022.  Secure File Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal Threats. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
ISSN: 2166-0727
2023-01-13
Purdy, Ruben, Duvalsaint, Danielle, Blanton, R. D. Shawn.  2022.  Security Metrics for Logic Circuits. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :53—56.
Any type of engineered design requires metrics for trading off both desirable and undesirable properties. For integrated circuits, typical properties include circuit size, performance, power, etc., where for example, performance is a desirable property and power consumption is not. Security metrics, on the other hand, are extremely difficult to develop because there are active adversaries that intend to compromise the protected circuitry. This implies metric values may not be static quantities, but instead are measures that degrade depending on attack effectiveness. In order to deal with this dynamic aspect of a security metric, a general attack model is proposed that enables the effectiveness of various security approaches to be directly compared in the context of an attack. Here, we describe, define and demonstrate that the metrics presented are both meaningful and measurable.
Onoja, Daniel, Hitchens, Michael, Shankaran, Rajan.  2022.  Security Policy to Manage Responses to DDoS Attacks on 5G IoT Enabled Devices. 2022 13th International Conference on Information and Communication Systems (ICICS). :30–35.
In recent years, the need for seamless connectivity has increased across various network platforms with demands coming from industries, home, mobile, transportation and office networks. The 5th generation (5G) network is being deployed to meet such demand of high-speed seamless network device connections. The seamless connectivity 5G provides could be a security threat allowing attacks such as distributed denial of service (DDoS) because attackers might have easy access into the network infrastructure and higher bandwidth to enhance the effects of the attack. The aim of this research is to provide a security solution for 5G technology to DDoS attacks by managing the response to threats posed by DDoS. Deploying a security policy language which is reactive and event-oriented fits into a flexible, efficient, and lightweight security approach. A policy in our language consists of an event whose occurrence triggers a policy rule where one or more actions are taken.
2023-01-20
Yao, Jiming, Wu, Peng, Chen, Duanyun, Wang, Wei, Fang, Youxu.  2022.  A security scheme for network slicing selection based on Pohlig-Hellman algorithm in smart grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:906—910.
5G has significantly facilitated the development of attractive applications such as autonomous driving and telemedicine due to its lower latency, higher data rates, and enormous connectivity. However, there are still some security and privacy issues in 5G, such as network slicing privacy and flexibility and efficiency of network slicing selection. In the smart grid scenario, this paper proposes a 5G slice selection security scheme based on the Pohlig-Hellman algorithm, which realizes the protection of slice selection privacy data between User i(Ui) and Access and Mobility Management function (AMF), so that the data will not be exposed to third-party attackers. Compared with other schemes, the scheme proposed in this paper is simple in deployment, low in computational overhead, and simple in process, and does not require the help of PKI system. The security analysis also verifies that the scheme can accurately protect the slice selection privacy data between Ui and AMF.
2023-02-02
Vasal, Deepanshu.  2022.  Sequential decomposition of Stochastic Stackelberg games. 2022 American Control Conference (ACC). :1266–1271.
In this paper, we consider a discrete-time stochastic Stackelberg game where there is a defender (also called leader) who has to defend a target and an attacker (also called follower). The attacker has a private type that evolves as a controlled Markov process. The objective is to compute the stochastic Stackelberg equilibrium of the game where defender commits to a strategy. The attacker’s strategy is the best response to the defender strategy and defender’s strategy is optimum given the attacker plays the best response. In general, computing such equilibrium involves solving a fixed-point equation for the whole game. In this paper, we present an algorithm that computes such strategies by solving lower dimensional fixed-point equations for each time t. Based on this algorithm, we compute the Stackelberg equilibrium of a security example.