Biblio
The exchange of data has expanded utilizing the web nowadays, but it is not dependable because, during communication on the cloud, any malicious client can alter or steal the information or misuse it. To provide security to the data during transmission is becoming hot research and quite challenging topic. In this work, our proposed algorithm enhances the security of the keys by increasing its complexity, so that it can't be guessed, breached or stolen by the third party and hence by this, the data will be concealed while sending between the users. The proposed algorithm also provides more security and authentication to the users during cloud communication, as compared to the previously existing algorithm.
Technology advancement also increases the risk of a computer's security. As we can have various mechanisms to ensure safety but still there have flaws. The main concerned area is user authentication. For authentication, various biometric applications are used but once authentication is done in the begging there was no guarantee that the computer system is used by the authentic user or not. The intrusion detection system (IDS) is a particular procedure that is used to identify intruders by analyzing user behavior in the system after the user logged in. Host-based IDS monitors user behavior in the computer and identify user suspicious behavior as an intrusion or normal behavior. This paper discusses how an expert system detects intrusions using a set of rules as a pattern recognized engine. We propose a PIDE (Pattern Based Intrusion Detection) model, which is verified previously implemented SBID (Statistical Based Intrusion Detection) model. Experiment results indicate that integration of SBID and PBID approach provides an extensive system to detect intrusion.
Managing identity across an ever-growing digital services landscape has become one of the most challenging tasks for security experts. Over the years, several Identity Management (IDM) systems were introduced and adopted to tackle with the growing demand of an identity. In this series, a recently emerging IDM system is Self-Sovereign Identity (SSI) which offers greater control and access to users regarding their identity. This distinctive feature of the SSI IDM system represents a major development towards the availability of sovereign identity to users. uPort is an emerging open-source identity management system providing sovereign identity to users, organisations, and other entities. As an emerging identity management system, it requires meticulous analysis of its architecture, working, operational services, efficiency, advantages and limitations. Therefore, this paper contributes towards achieving all of these objectives. Firstly, it presents the architecture and working of the uPort identity management system. Secondly, it develops a Decentralized Application (DApp) to demonstrate and evaluate its operational services and efficiency. Finally, based on the developed DApp and experimental analysis, it presents the advantages and limitations of the uPort identity management system.
The Global Positioning System (GPS) can determine the position of any person or object on earth based on satellite signals. But when inside the building, the GPS cannot receive signals, the indoor positioning system will determine the precise position. How to achieve more precise positioning is the difficulty of an indoor positioning system now. In this paper, we proposed an ultra-wideband fingerprinting positioning method based on a convolutional neural network (CNN), and we collect the dataset in a room to test the model, then compare our method with the existing method. In the experiment, our method can reach an accuracy of 98.36%. Compared with other fingerprint positioning methods our method has a great improvement in robustness. That results show that our method has good practicality while achieves higher accuracy.
Cyber attacks and the associated costs made cybersecurity a vital part of any system. User behavior and decisions are still a major part in the coping with these risks. We developed a model of optimal investment and human decisions with security measures, given that the effectiveness of each measure depends partly on the performance of the others. In an online experiment, participants classified events as malicious or non-malicious, based on the value of an observed variable. Prior to making the decisions, they had invested in three security measures - a firewall, an IDS or insurance. In three experimental conditions, maximal investment in only one of the measures was optimal, while in a fourth condition, participants should not have invested in any of the measures. A previous paper presents the analysis of the investment decisions. This paper reports users' classifications of events when interacting with these systems. The use of security mechanisms helped participants gain higher scores. Participants benefited in particular from purchasing IDS and/or Cyber Insurance. Participants also showed higher sensitivity and compliance with the alerting system when they could benefit from investing in the IDS. Participants, however, did not adjust their behavior optimally to the security settings they had chosen. The results demonstrate the complex nature of risk-related behaviors and the need to consider human abilities and biases when designing cyber security systems.